Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks

[1]  C. Pentland,et al.  CO2-brine displacement in heterogeneous carbonates , 2015 .

[2]  V. Cnudde,et al.  3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging , 2014 .

[3]  Adrian Sheppard,et al.  Imaged-based multiscale network modelling of microporosity in carbonates , 2014 .

[4]  Veerle Cnudde,et al.  HECTOR: A 240kV micro-CT setup optimized for research , 2013 .

[5]  Kenneth Stuart Sorbie,et al.  Representation of multiscale heterogeneity via multiscale pore networks , 2013 .

[6]  Veerle Cnudde,et al.  High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications , 2013 .

[7]  Martin J. Blunt,et al.  The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis , 2012 .

[8]  Kenneth Stuart Sorbie,et al.  Stochastic Pore Network Generation from 3D Rock Images , 2012, Transport in Porous Media.

[9]  Martin J. Blunt,et al.  Capillary trapping in sandstones and carbonates: Dependence on pore structure , 2012 .

[10]  Ali Q. Raeini,et al.  Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method , 2012, J. Comput. Phys..

[11]  D. Bauer,et al.  Improving the Estimations of Petrophysical Transport Behavior of Carbonate Rocks Using a Dual Pore Network Approach Combined with Computed Microtomography , 2012, Transport in Porous Media.

[12]  S. Youssef,et al.  From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  David F. Fouhey,et al.  Representative elementary volume estimation for porosity, moisture saturation, and air‐water interfacial areas in unsaturated porous media: Data quality implications , 2011 .

[14]  Veerle Cnudde,et al.  Three-Dimensional Analysis of High-Resolution X-Ray Computed Tomography Data with Morpho+ , 2011, Microscopy and Microanalysis.

[15]  M. L. Porter,et al.  Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study , 2010 .

[16]  Martin J Blunt,et al.  Pore-network extraction from micro-computerized-tomography images. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  P. Meakin,et al.  Modeling and simulation of pore‐scale multiphase fluid flow and reactive transport in fractured and porous media , 2009 .

[18]  N. Gland,et al.  Axial and Radial Permeability Evolutions of Compressed Sandstones: End Effects and Shear-band Induced Permeability Anisotropy , 2009 .

[19]  Karsten E. Thompson,et al.  Application of a New Grain-Based Reconstruction Algorithm to Microtomography Images for Quantitative Characterization and Flow Modeling , 2008 .

[20]  Kenneth Stuart Sorbie,et al.  Efficient extraction of networks from three‐dimensional porous media , 2007 .

[21]  Olivier Monga,et al.  Representing geometric structures in 3D tomography soil images: Application to pore-space modeling , 2007, Comput. Geosci..

[22]  W. B. Lindquist,et al.  3D image-based characterization of fluid displacement in a Berea core , 2007 .

[23]  T. Patzek,et al.  Pore space morphology analysis using maximal inscribed spheres , 2006 .

[24]  Joakim Lindblad,et al.  Surface area estimation of digitized 3D objects using weighted local configurations , 2005, Image Vis. Comput..

[25]  Martin J. Blunt,et al.  Predictive pore‐scale modeling of two‐phase flow in mixed wet media , 2004 .

[26]  Mark A. Knackstedt,et al.  Effect of Network Topology on Relative Permeability , 2004 .

[27]  Matthew D. Jackson,et al.  Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. , 2002 .

[28]  Markus Hilpert,et al.  Computation of the interfacial area for two-fluid porous medium systems. , 2002, Journal of contaminant hydrology.

[29]  J Ohser,et al.  On the analysis of spatial binary images , 2001, Journal of microscopy.

[30]  Knackstedt,et al.  Finite size scaling for percolation on elongated lattices in two and three dimensions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Frank Mücklich,et al.  Statistical Analysis of Microstructures in Materials Science , 2000 .

[32]  S. Marrink,et al.  Percolation thresholds on elongated lattices , 1999 .

[33]  Stig Bakke,et al.  Extending Predictive Capabilities to Network Models , 1998 .

[34]  S. Bakke,et al.  3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks , 1997 .

[35]  Scher,et al.  Simulation and theory of two-phase flow in porous media. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  E. Albano,et al.  Critical behavior of the site percolation model on the square lattice in aL×M geometry , 1991 .

[37]  Roger L. Nielsen,et al.  TRACE. FOR: a program for the calculation of combined major and trace-element liquid lines of descent for natural magmatic systems , 1988 .

[38]  David Wilkinson,et al.  Invasion percolation: a new form of percolation theory , 1983 .

[39]  Muhammad Sahimi,et al.  Flow and Transport in Porous Media and Fractured Rock - Toc , 2016 .

[40]  Ayaz Mehmani,et al.  The effect of microporosity on transport properties in porous media , 2014 .

[41]  M. Blunt,et al.  Pore-scale imaging and modelling , 2013 .

[42]  Mark A. Knackstedt,et al.  MULTI-SCALE IMAGING AND MODELING WORKFLOW TO CAPTURE AND CHARACTERIZE MICROPOROSITY IN SANDSTONE , 2013 .

[43]  D. Wildenschild,et al.  X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems , 2013 .

[44]  Lorenz Holzer,et al.  Review of FIB tomography , 2012 .

[45]  D. Bauer,et al.  HIGH RESOLUTION µ-CT COMBINED TO NUMERICAL MODELS TO ASSESS ELECTRICAL PROPERTIES OF BIMODAL CARBONATES , 2008 .

[46]  P. Levitz,et al.  EFFECT OF THE PORE STRUCTURE ON RESISTIVITY INDEX CURVES , 2007 .

[47]  W. V. Pinczewski,et al.  3D imaging and flow characterization of the pore space of carbonate core samples , 2006 .

[48]  Holger Averdunk,et al.  IMPROVED PORE NETWORK EXTRACTION METHODS , 2005 .

[49]  Tadeusz W Patzek,et al.  Robust determination of the pore-space morphology in sedimentary rocks , 2003 .

[50]  Marc Fleury,et al.  RESISTIVITY IN CARBONATES: NEW INSIGHTS , 2002 .

[51]  Zeyun Yu,et al.  New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils , 1999 .

[52]  J. Kärger,et al.  Flow and Transport in Porous Media and Fractured Rock , 1996 .