Sodium glucose-linked transport in the ruminal epithelium of fallow deer – comparison to sheep

[1]  R. Hofmann Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system , 1989, Oecologia.

[2]  A. Riegger,et al.  Developmental changes of sugar transport in the ovine small intestine , 1976, Pflügers Archiv.

[3]  J. Aschenbach,et al.  Glucose uptake via SGLT-1 is stimulated by beta(2)-adrenoceptors in the ruminal epithelium of sheep. , 2002, The Journal of nutrition.

[4]  A Carruthers,et al.  The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. , 2001, Biochemistry.

[5]  J. Kamler Morphological variability of forestomach mucosal membrane in red deer, fallow deer, roe deer and mouflon. , 2001, Small ruminant research : the journal of the International Goat Association.

[6]  J. Aschenbach,et al.  Glucose is absorbed in a sodium-dependent manner from forestomach contents of sheep. , 2000, The Journal of nutrition.

[7]  S. Shirazi-Beechey,et al.  Expression of the Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants , 2000, Pflügers Archiv.

[8]  G. Burckhardt,et al.  Functional and molecular biological evidence of SGLT-1 in the ruminal epithelium of sheep. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[9]  F. Owens,et al.  Acidosis in cattle: a review. , 1998, Journal of animal science.

[10]  S. Shirazi-Beechey,et al.  Molecular events involved in glucose-induced intestinal Na+/D-glucose co-transporter (SGLT1) expression. , 1997, Biochemical Society transactions.

[11]  P. Barker,et al.  Nutrient regulation of the intestinal Na+/glucose co-transporter (SGLT1) gene expression. , 1997, Biochemical and biophysical research communications.

[12]  J. Diamond,et al.  Regulation of intestinal sugar transport. , 1997, Physiological reviews.

[13]  S. Srai,et al.  Rapid enhancement of brush border glucose uptake after exposure of rat jejunal mucosa to glucose. , 1996, Gut.

[14]  S. Shirazi-Beechey,et al.  Intestinal sugar transport in ruminants. , 1995 .

[15]  M. Hediger,et al.  Molecular physiology of sodium-glucose cotransporters. , 1994, Physiological reviews.

[16]  K. Bickhardt,et al.  Experimentelle Untersuchungen zur Pathogenese der Pansenacidose beim Schaf , 1993 .

[17]  M. Ganter,et al.  [Experimental studies of the pathogenesis of rumen acidosis in sheep]. , 1993, Zentralblatt fur Veterinarmedizin. Reihe A.

[18]  R. Scaramuzzi,et al.  Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones in sheep. , 2019, Journal of reproduction and fertility. Supplement.

[19]  E. N. Bergman Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. , 1990, Physiological reviews.

[20]  H. Martens,et al.  The effect of low mucosal pH on sodium and chloride movement across the isolated rumen mucosa of sheep. , 1989, Quarterly journal of experimental physiology.

[21]  W. C. Ellis,et al.  Dynamics of digestion in cattle, sheep, goats and deer. , 1986, Journal of animal science.

[22]  P. K. Smith,et al.  Measurement of protein using bicinchoninic acid. , 1985, Analytical biochemistry.

[23]  E. Scharrer,et al.  Influence of age and rumen development on intestinal absorption of galactose and glucose in lambs. A functional and morphological study. , 2010, Zentralblatt fur Veterinarmedizin. Reihe A.