Structural Descriptions using Feature Context

Visual object representations are often thought of a xed set of rigid parts or features. We show in a computational study, using furniture objects depicted in line drawings, that another valuable source of structural information is feature context. Employing such context evaluation during feature extraction, leads to a rich object description by surfaces and silhouette structures. This redundant description is useful and necessary because the same object can display dieren t conspicuous features in dieren t settings. Category-specic features are loosely expressed in order to match the structural variability existent within categories.

[1]  H. Blum Biological shape and visual science (part I) , 1973 .

[2]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[3]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[4]  S. Palmer Vision Science : Photons to Phenomenology , 1999 .

[5]  King-Sun Fu,et al.  Generating Object Descriptions for Model Retrieval , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[7]  Adolfo Guzman,et al.  Decomposition of a visual scene into three-dimensional bodies , 1968 .

[8]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[9]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[10]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[11]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[12]  Azriel Rosenfeld,et al.  A Medial Axis Transformation for Grayscale Pictures , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  M. B. Clowes,et al.  On Seeing Things , 1971, Artif. Intell..

[15]  David Marr,et al.  Visual information processing: artificial intelligence and the sensorium of sight , 1987 .

[16]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[17]  Demetri Terzopoulos,et al.  Signal matching through scale space , 1986, International Journal of Computer Vision.

[18]  I. Biederman Perceiving Real-World Scenes , 1972, Science.

[19]  M. Potter Meaning in visual search. , 1975, Science.

[20]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[21]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[22]  M. Kutas,et al.  Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. , 1998, Psychophysiology.

[23]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[24]  Harry G. Barrow,et al.  Interpreting Line Drawings as Three-Dimensional Surfaces , 1980, Artif. Intell..

[25]  Heinrich H Bülthoff,et al.  Image-based object recognition in man, monkey and machine , 1998, Cognition.

[26]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..