Perfect Plasticity with Damage and Healing at Small Strains, Its Modeling, Analysis, and Computer Implementation

The quasistatic, Prandtl-Reuss perfect plasticity at small strains is combined with a gradient, reversible (i.e. admitting healing) damage which influences both the elastic moduli and the yield stress. Existence of weak solutions of the resulted system of variational inequalities is proved by a suitable fractional-step discretisation in time with guaranteed numericalstability and convergence. After finite-element approximation, this scheme is computationally implemented and illustrative 2-dimensional simulations are performed. The model allows e.g. for application in geophysical modelling of re-occurring rupture of lithospheric faults. Resulted incremental problems are solved in MATLAB by quasi-Newton method to resolve elastoplasticity component of the solution while damage component is obtained by solution of a quadratic programming problem.

[1]  Jan Valdman,et al.  Solution of One-Time-Step Problems in Elastoplasticity by a Slant Newton Method , 2008, SIAM J. Sci. Comput..

[2]  Tomáš Roubíček,et al.  Rate-Independent Systems: Theory and Application , 2015 .

[3]  S. Wheeler,et al.  An anisotropic elastoplastic model for soft clays , 2003 .

[4]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[5]  A. Visintin,et al.  On A Class Of Doubly Nonlinear Evolution Equations , 1990 .

[6]  G. Maugin The Thermomechanics of Plasticity and Fracture , 1992 .

[7]  Carsten Carstensen,et al.  A quasi‐static boundary value problem in multi‐surface elastoplasticity: Part 1—Analysis , 2004 .

[8]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[9]  QUASISTATIC EVOLUTION PROBLEMS FOR NONHOMOGENEOUS ELASTIC PLASTIC MATERIALS , 2008 .

[10]  R. Toupin Elastic materials with couple-stresses , 1962 .

[11]  A. DeSimone,et al.  Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling , 2011 .

[12]  Ernst Rank,et al.  An rp-adaptive finite element method for elastoplastic problems , 2004 .

[13]  Morton E. Gurtin,et al.  Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales , 2006 .

[14]  Alexander Mielke,et al.  Quasi-Static Small-Strain Plasticity in the Limit of Vanishing Hardening and Its Numerical Approximation , 2012, SIAM J. Numer. Anal..

[15]  P. Podio-Guidugli Contact interactions , stress , and material symmetry , for nonsimple elastic materials , 2002 .

[16]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[17]  L. Adam,et al.  Identification of some nonsmooth evolution systems with illustration on adhesive contacts at small strains , 2014, 1411.4903.

[18]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[19]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[20]  S. Repin ERRORS OF FINITE ELEMENT METHOD FOR PERFECTLY ELASTO-PLASTIC PROBLEMS , 1996 .

[21]  V. Crismale Globally stable quasistatic evolution for a coupled elastoplastic–damage model , 2016 .

[22]  J. Marigo,et al.  Gradient Damage Models Coupled with Plasticity and Nucleation of Cohesive Cracks , 2014, Archive for Rational Mechanics and Analysis.

[23]  Huang Mao-song An anisotropic elastoplastic model for soft clays , 2007 .

[24]  R. Weinberger,et al.  Non-linear elastic behaviour of damaged rocks , 1997 .

[25]  K. Maurin Direct Methods in Calculus of Variations for Manifolds with Isometries. Equivariant Sobolev Theorems. Yamabe Problem and its Relation to General Relativity , 1997 .

[26]  Tomás Roubícek,et al.  A Model of Rupturing Lithospheric Faults with Reoccurring Earthquakes , 2013, SIAM J. Appl. Math..

[27]  Jos F. Sturm,et al.  Implementation of interior point methods for mixed semidefinite and second order cone optimization problems , 2002, Optim. Methods Softw..

[28]  Milan Jirásek,et al.  Inelastic Analysis of Structures , 2001 .

[29]  P. Gruber,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Analytical and Numerical Aspects of Time-dependent Models with Internal Variables , 1996 .

[30]  W. Han,et al.  Analysis and Approximation of Contact Problems with Adhesion or Damage , 2005 .

[31]  T. Roubíček Thermodynamics of perfect plasticity , 2012 .

[32]  M. Šilhavý Phase transitions in non-simple bodies , 1985 .

[33]  Y. Ben‐Zion,et al.  The Elastic Strain Energy of Damaged Solids with Applications to Non-Linear Deformation of Crystalline Rocks , 2011 .

[34]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[35]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[36]  T. Roubíček,et al.  Magnetic shape-memory alloys: thermomechanical modelling and analysis , 2014, Continuum Mechanics and Thermodynamics.

[37]  C. Carstensen,et al.  A quasi‐static boundary value problem in multi‐surface elastoplasticity: part 2—numerical solution , 2005 .

[38]  G. D. Maso,et al.  Quasistatic Evolution Problems for Linearly Elastic–Perfectly Plastic Materials , 2004, math/0412212.

[39]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[40]  Talal Rahman,et al.  Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements , 2013, Appl. Math. Comput..

[41]  G. D. Maso,et al.  Quasistatic Crack Growth in Nonlinear Elasticity , 2005 .

[42]  J. Carter,et al.  A structured Cam Clay model , 2002 .

[43]  Joachim Schöberl,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Fast Solvers and A Posteriori Error Estimates in Elastoplasticity , 1996 .

[44]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[45]  Small‐strain heterogeneous elastoplasticity revisited , 2012 .

[46]  A. Mielke,et al.  Complete damage in elastic and viscoelastic media and its energetics , 2008 .

[47]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[48]  M. Jirásek,et al.  Plastic model with non‐local damage applied to concrete , 2006 .

[49]  T. Roubíček Rate‐independent processes in viscous solids at small strains , 2009 .

[50]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[51]  J. Marigo,et al.  Gradient damage models coupled with plasticity: Variational formulation and main properties , 2015 .

[52]  Y. Ben‐Zion,et al.  Distributed damage, faulting, and friction , 1997 .

[53]  V. Crismale,et al.  Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model , 2016 .

[54]  Martin Cermák,et al.  A TFETI domain decomposition solver for elastoplastic problems , 2012, Appl. Math. Comput..

[55]  B. Reddy,et al.  Some mathematical problems in perfect plasticity , 2004 .

[56]  P. Podio-Guidugli,et al.  A Thermodynamically Consistent Theory of the Ferro/Paramagnetic Transition , 2010 .

[57]  Jan Valdman,et al.  An Efficient Solution Algorithm for Elastoplasticity and its First Implementation Towards Uniform h- and p- Mesh Refinements , 2006 .

[58]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[59]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[60]  P. Podio-Guidugli,et al.  Hypertractions and hyperstresses convey the same mechanical information , 2009, 0906.4199.