Global stability for damped Timoshenko systems

We consider a nonlinear Timoshenko system as an initial-boundary value problem in a one-dimensional bounded domain. The system has a dissipative mechanism through frictional damping being present only in the equation for the rotation angle. We first give an alternative proof for a sufficient and necessary condition for exponential stability for the linear case. Polynomial stability is proved in general. The global existence of small, smooth solutions and the exponential stability is investigated for the nonlinear case.