Revealing the Role of Tin (IV) Halides in the Anisotropic Growth of CsPbX3 Perovskite Nanoplates.

We report a novel synthesis of CsPbX 3 perovskite nanoplates (PNPLs) driven by SnX 4 (X = Cl, Br, I) salts and address the role played by these hard Lewis acids in directing the formation of PNPLs. Sn 4+ disturbs the acid-base equilibrium of the system, increasing the protonation rate of oleylamine and inducing an anisotropic growth of the nanocrystals. Sn 4+ cations influence the reaction dynamics due to its complexation with oleylamine molecules. By monitoring the photoluminescence excitation and photoluminescence (PL) spectra of the PNPLs grown at different synthesis temperatures, we map the influence of the thickness on their optical properties. Time and spectrally resolved PL for colloidal dispersions with different optical densities, reveals that the dependence of the overall PL lifetime on the emission wavelength do not originate from energy transfer between PNPLs, but results from the contribution of PNPLs with distinct thickness, indicating that thicker PNPLs exhibit longer PL lifetimes.

[1]  T. Lian,et al.  Ultrafast Charge Separation in Two-Dimensional CsPbBr3 Perovskite Nanoplatelets. , 2019, The journal of physical chemistry letters.

[2]  C. H. de Brito Cruz,et al.  Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots. , 2018, The journal of physical chemistry letters.

[3]  J. Bao,et al.  Polarized Optoelectronics of CsPbX3 (X = Cl, Br, I) Perovskite Nanoplates with Tunable Size and Thickness , 2018 .

[4]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[5]  Chih-Jen Shih,et al.  Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability , 2018, ACS energy letters.

[6]  Q. Wang,et al.  Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets , 2018 .

[7]  Q. Akkerman,et al.  Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals , 2018, ACS nano.

[8]  Jongnam Park,et al.  High-Performance CsPbX3 Perovskite Quantum-Dot Light-Emitting Devices via Solid-State Ligand Exchange , 2018 .

[9]  P. Ghosh,et al.  Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. , 2017, The journal of physical chemistry letters.

[10]  W. Stark,et al.  Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. , 2017, Nano letters.

[11]  Antonietta Guagliardi,et al.  Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals , 2017, ACS nano.

[12]  Antonietta Guagliardi,et al.  Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals , 2017, ACS nano.

[13]  Xiaoqing Pan,et al.  Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process , 2016 .

[14]  Zhenyu Yang,et al.  Amine‐Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light‐Emitting Diodes , 2016 .

[15]  Y. Tong,et al.  Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid‐ Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion , 2016 .

[16]  Verena A. Hintermayr,et al.  Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. , 2016, Angewandte Chemie.

[17]  O. Voznyy,et al.  Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. , 2016, ACS nano.

[18]  S. Stranks,et al.  Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. , 2016, ACS nano.

[19]  A Paul Alivisatos,et al.  Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. , 2016, ACS nano.

[20]  Tom Gregorkiewicz,et al.  Energy Transfer between Inorganic Perovskite Nanocrystals , 2016 .

[21]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[22]  Giovanni Bertoni,et al.  Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control , 2016, Journal of the American Chemical Society.

[23]  A Paul Alivisatos,et al.  Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. , 2015, Journal of the American Chemical Society.

[24]  Yu Tong,et al.  Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. , 2015, Nano letters.

[25]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[26]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[27]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[28]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[29]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[30]  I. Moreels,et al.  Nuclear magnetic resonance spectroscopy demonstrating dynamic stabilization of CdSe quantum dots by alkylamines , 2010 .

[31]  A. J. McQuillan,et al.  Attenuated total reflection infrared studies of oleate and trioctylphosphine oxide ligand adsorption and exchange reactions on CdS quantum dot films. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[32]  B. Chan,et al.  The Synthesis, Characterization, and Lewis Acidity of SnI2 and SnI4 , 1997 .

[33]  K. Pitzer,et al.  Color and Bond Character , 1941 .

[34]  E. Sargent,et al.  The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance , 2018, Advanced materials.