Ecological Stoichiometry of Ocean Plankton.

Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

[1]  M. R. Droop,et al.  Vitamin B12 and Marine Ecology. IV. The Kinetics of Uptake, Growth and Inhibition in Monochrysis Lutheri , 1968, Journal of the Marine Biological Association of the United Kingdom.

[2]  Juan A. Bonachela,et al.  Resource allocation by the marine cyanobacterium Synechococcus WH8102 in response to different nutrient supply ratios , 2015 .

[3]  Curtis Deutsch,et al.  Large-scale variations in the stoichiometry of marine organic matter respiration , 2014 .

[4]  S. Chisholm,et al.  Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea , 2003 .

[5]  Michael W. Lomas,et al.  Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP) , 2009 .

[6]  M. Boersma,et al.  Dynamic stoichiometric response to food quality fluctuations in the heterotrophic dinoflagellate Oxyrrhis marina , 2012 .

[7]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[8]  Frederick C. Neidhardt,et al.  Effect of Temperature on In Vivo Protein Synthetic Capacity in Escherichia coli , 1998, Journal of bacteriology.

[9]  E. Laws,et al.  Nutrient‐ and light‐limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean , 1980 .

[10]  Paul J. Harrison,et al.  Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae) , 2002 .

[11]  A. Martiny,et al.  Interactions between Thermal Acclimation, Growth Rate, and Phylogeny Influence Prochlorococcus Elemental Stoichiometry , 2016, PloS one.

[12]  D. Capone,et al.  Emerging patterns of marine nitrogen fixation , 2011, Nature Reviews Microbiology.

[13]  P. Thompson,et al.  EFFECTS OF VARIATION IN TEMPERATURE. I. ON THE BIOCHEMICAL COMPOSITION OF EIGHT SPECIES OF MARINE PHYTOPLANKTON 1 , 1992 .

[14]  S. Allison,et al.  Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter , 2014 .

[15]  Luke R. Thompson,et al.  Choreography of the Transcriptome, Photophysiology, and Cell Cycle of a Minimal Photoautotroph, Prochlorococcus , 2009, PloS one.

[16]  M. Follows,et al.  Microzooplankton regulation of surface ocean POC:PON ratios , 2016 .

[17]  Robert W. Sterner,et al.  Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry , 2003 .

[18]  P. Falkowski,et al.  ACCLIMATION TO SPECTRAL IRRADIANCE IN ALGAE , 1991 .

[19]  J. Heijnen,et al.  Microbiology and biochemistry of the enhanced biological phosphate removal process , 1998 .

[20]  B. Ward,et al.  Organic Matter Stoichiometry, Flux, and Oxygen Control Nitrogen Loss in the Ocean , 2014, Science.

[21]  J. Elser,et al.  Growth rate–stoichiometry couplings in diverse biota , 2003 .

[22]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[23]  Andrew C. Tolonen,et al.  Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability , 2006, Molecular systems biology.

[24]  Lisa R. Moore,et al.  Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes , 1998, Nature.

[25]  A. C. Redfield The biological control of chemical factors in the environment. , 1960, Science progress.

[26]  E. Barbarino,et al.  Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors , 2004 .

[27]  P. Levin,et al.  Growth rate and cell size: A re-examination of the growth law , 2015, Current opinion in microbiology.

[28]  B. V. Van Mooy,et al.  Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method , 2008 .

[29]  Gabrielle Rocap,et al.  Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. V. Mooy,et al.  Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: Water-column distribution, planktonic sources, and fatty acid composition , 2010 .

[31]  G. Rhee,et al.  OPTIMUM N:P RATIOS AND COEXISTENCE OF PLANKTONIC ALGAE 1 , 1980 .

[32]  M. Lomas,et al.  Seasonal and long‐term changes in elemental concentrations and ratios of marine particulate organic matter , 2016 .

[33]  P. Raimbault,et al.  Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean , 2007 .

[34]  Ashutosh Kumar Singh,et al.  C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station in the North Atlantic Ocean , 2015 .

[35]  R. Geider,et al.  ELEMENTAL AND BIOCHEMICAL COMPOSITION OF RHINOMONAS RETICULATA (CRYPTOPHYTA) IN RELATION TO LIGHT AND NITRATE‐TO‐PHOSPHATE SUPPLY RATIOS 1 , 2005 .

[36]  P. Harrison,et al.  Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady-state growth kinetics of Skeletonema costatum , 1976 .

[37]  J. Grover,et al.  Element content of Pseudomonas fluorescens varies with growth rate and temperature: A replicated chemostat study addressing ecological stoichiometry , 2008 .

[38]  C. Godwin,et al.  Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry , 2015, The ISME Journal.

[39]  G. Jackson,et al.  Small Phytoplankton and Carbon Export from the Surface Ocean , 2007, Science.

[40]  R. Geider,et al.  Responses of elemental and biochemical composition of Chaetoceros muelleri to growth under varying light and nitrate : phosphate supply ratios and their influence on critical N: P , 2004 .

[41]  Steven Emerson,et al.  Annual net community production and the biological carbon flux in the ocean , 2014 .

[42]  Sophie Clayton,et al.  Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre , 2015, Proceedings of the National Academy of Sciences.

[43]  Harriet Alexander,et al.  Metatranscriptome analyses indicate resource partitioning between diatoms in the field , 2015, Proceedings of the National Academy of Sciences.

[44]  P. Vitousek,et al.  Responses of extracellular enzymes to simple and complex nutrient inputs , 2005 .

[45]  C. Deutsch,et al.  Nutrient ratios as a tracer and driver of ocean biogeochemistry. , 2012, Annual review of marine science.

[46]  M. Heldal,et al.  Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria , 1996 .

[47]  Hongbin Liu,et al.  Prochlorococcus and Synechococcus growth rates and contributions to production in the Arabian Sea during the 1995 Southwest and Northeast Monsoons , 1998 .

[48]  D. Caron,et al.  Biogeochemical interactions control a temporal succession in the elemental composition of marine communities , 2016 .

[49]  R. Olson,et al.  Effects of environmental stresses on the cell cycle of two marine phytoplankton species. , 1986, Plant physiology.

[50]  M. Vanni,et al.  Interactive effects of light and nutrients on phytoplankton stoichiometry , 2006, Oecologia.

[51]  S. Matallana-Surget,et al.  Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005 , 2014, PloS one.

[52]  A. Grossman,et al.  Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same , 1992, Journal of bacteriology.

[53]  T. Lenton,et al.  Biotic stoichiometric controls on the deep ocean N:P ratio , 2007 .

[54]  Kirsten Gausing,et al.  Regulation of ribosome synthesis in E. coli , 1982 .

[55]  Richard J. Geider,et al.  LIGHT AND TEMPERATURE DEPENDENCE OF THE CARBON TO CHLOROPHYLL a RATIO IN MICROALGAE AND CYANOBACTERIA: IMPLICATIONS FOR PHYSIOLOGY AND GROWTH OF PHYTOPLANKTON , 1987 .

[56]  G. Rhee A CONTINUOUS CULTURE STUDY OF PHOSPHATE UPTAKE, GROWTH RATE AND POLYPHOSPHATE IN SCENEDESMUS SP. 1 , 1973 .

[57]  P. Thompson,et al.  INFLUENCE OF IRRADIANCE ON CELL VOLUME AND CARBON QUOTA FOR TEN SPECIES OF MARINE PHYTOPLANKTON 1 , 1991 .

[58]  R. Geider,et al.  Effects of nitrate : phosphate supply ratio and irradiance on the C : N : P stoichiometry of Chaetoceros muelleri , 2004 .

[59]  C. Duarte,et al.  Biomass distribution in marine planktonic communities , 1997 .

[60]  Hugh L. MacIntyre,et al.  Photoacclimation in the marine diatom Skeletonema costatum , 2000 .

[61]  Judith Meyer,et al.  Nitrogen-limited growth of marine phytoplankton—I. changes in population characteristics with steady-state growth rate , 1972 .

[62]  Richard Sanders,et al.  Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres , 2008 .

[63]  G. Rhee,et al.  The effect of environmental factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation1 , 1981 .

[64]  M. Lomas,et al.  Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean , 2013 .

[65]  K. Flynn Use, abuse, misconceptions and insights from quota models — the Droop cell quota model 40 years on , 2008 .

[66]  M. Lomas,et al.  Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus , 2014, Proceedings of the National Academy of Sciences.

[67]  Andrew R. Solow,et al.  Physiological and ecological drivers of early spring blooms of a coastal phytoplankter , 2016, Science.

[68]  Antonietta Quigg,et al.  THE ELEMENTAL COMPOSITION OF SOME MARINE PHYTOPLANKTON 1 , 2003 .

[69]  Y. K. Lee,et al.  Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1 , 1997, Journal of Applied Phycology.

[70]  Richard J. Geider,et al.  A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature , 1998 .

[71]  K. Caldeira,et al.  Effect of Temperature on Photosynthesis and Growth in Marine Synechococcus spp.1[C][OPEN] , 2013, Plant Physiology.

[72]  Maureen L. Coleman,et al.  Phosphate acquisition genes in Prochlorococcus ecotypes: Evidence for genome-wide adaptation , 2006, Proceedings of the National Academy of Sciences.

[73]  J. Kromkamp Formation and functional significance of storage products in cyanobacteria , 1987 .

[74]  J. Raven,et al.  IS THE GROWTH RATE HYPOTHESIS APPLICABLE TO MICROALGAE? 1 , 2010 .

[75]  C. Neuhauser,et al.  Toward a mechanistic understanding of how natural bacterial communities respond to changes in temperature in aquatic ecosystems , 2008, The ISME Journal.

[76]  E. Flores,et al.  Regulation of nitrate reductase cellular levels in the cyanobacteria Anabaena variabilis and Synechocystis sp. , 1985 .

[77]  R. Sterner Ocean stoichiometry, global carbon, and climate , 2015, Proceedings of the National Academy of Sciences.

[78]  Timothy M. Lenton,et al.  The impact of temperature on marine phytoplankton resource allocation and metabolism , 2013 .

[79]  C. Godwin,et al.  Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria. , 2017, Ecology.

[80]  Hugh L. MacIntyre,et al.  A dynamic model of photoadaptation in phytoplankton , 1996 .

[81]  K. Arrigo,et al.  Processes and patterns of oceanic nutrient limitation , 2013 .

[82]  J. Seppälä,et al.  Interaction Effects of Light, Temperature and Nutrient Limitations (N, P and Si) on Growth, Stoichiometry and Photosynthetic Parameters of the Cold-Water Diatom Chaetoceros wighamii , 2015, PloS one.

[83]  C. Arnosti,et al.  Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon , 2011, PloS one.

[84]  J. Goering,et al.  UPTAKE OF NEW AND REGENERATED FORMS OF NITROGEN IN PRIMARY PRODUCTIVITY1 , 1967 .

[85]  H C Lim,et al.  Regulation of ribosome synthesis in Escherichia coli: Effects of temperature and dilution rate changes , 2000, Biotechnology and bioengineering.

[86]  K. Arrigo,et al.  Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton , 2010 .

[87]  C. Trick,et al.  Growth at Low Temperature Mimics High-Light Acclimation in Chlorella vulgaris , 1994, Plant physiology.

[88]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[89]  J. Raven,et al.  Temperature and algal growth , 1988 .

[90]  S. Allison,et al.  Phosphate supply explains variation in nucleic acid allocation but not C : P stoichiometry in the western North Atlantic , 2013 .

[91]  M. Loreau,et al.  Regulation of Redfield ratios in the deep ocean , 2015 .

[92]  Reiner Schlitzer,et al.  Depth‐dependent elemental compositions of particulate organic matter (POM) in the ocean , 2003 .

[93]  B. Biddanda,et al.  Temperature Affects Stoichiometry and Biochemical Composition of Escherichia coli , 2006, Microbial Ecology.

[94]  K. Schoo,et al.  Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers , 2009, Oecologia.

[95]  H. Hillebrand,et al.  Goldman revisited: Faster‐growing phytoplankton has lower N : P and lower stoichiometric flexibility , 2013 .

[96]  B. Osborne,et al.  Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth , 1989 .

[97]  B. Binder,et al.  Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments , 2003 .

[98]  Lisa R. Moore,et al.  Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity , 2009, Nature.

[99]  N. Garcia,et al.  Diel variability in the elemental composition of the marine cyanobacterium Synechococcus , 2016 .

[100]  D. O. Hessen,et al.  The impact of irradiance on optimal and cellular nitrogen to phosphorus ratios in phytoplankton. , 2016, Ecology letters.

[101]  B. Thorell,et al.  On the Glycogen in Escherichia coli B; its Synthesis and Breakdown and its Specific Labeling with 14C. , 1956 .

[102]  E. Mackinlay,et al.  Effect of temperature on lipid composition of the marine cryptomonad Chroomonas salina , 1989 .

[103]  D. Turpin,et al.  STEADY‐STATE LUXURY CONSUMPTION AND THE CONCEPT OF OPTIMUM NUTRIENT RATIOS: A STUDY WITH PHOSPHATE AND NITRATE LIMITED SELENASTRUM MINUTUM (CHLOROPHYTA) 1 , 1985 .

[104]  William F. Fagan,et al.  Biological stoichiometry from genes to ecosystems. , 2000 .

[105]  R. Geider,et al.  Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis , 2002 .

[106]  R. Olson,et al.  Growth of Prochlorococcus, a Photosynthetic Prokaryote, in the Equatorial Pacific Ocean , 1995, Science.

[107]  Ying Chun Liu,et al.  Growth Rate Regulation of rRNA Content of a MarineSynechococcus (Cyanobacterium) Strain , 1998, Applied and Environmental Microbiology.

[108]  Jasper A. Vrugt,et al.  Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter , 2013 .

[109]  N. M. Price The elemental stoichiometry and composition of an iron‐limited diatom , 2005 .

[110]  Hugh L. MacIntyre,et al.  PHOTOACCLIMATION OF PHOTOSYNTHESIS IRRADIANCE RESPONSE CURVES AND PHOTOSYNTHETIC PIGMENTS IN MICROALGAE AND CYANOBACTERIA 1 , 2002 .

[111]  G. Woodward,et al.  Temperature and the biogeography of algal stoichiometry , 2015 .

[112]  J. C. Goldman,et al.  Steady-State Growth and Chemical Composition of the Marine Chlorophyte Dunaliella tertiolecta in Nitrogen-Limited Continuous Cultures , 1979, Applied and environmental microbiology.

[113]  K. Hinrichs,et al.  Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing. , 2013, Environmental microbiology.

[114]  François W. Primeau,et al.  Temperature influence on phytoplankton community growth rates , 2016 .

[115]  Fei-xue Fu,et al.  EFFECTS OF INCREASED TEMPERATURE AND CO2 ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINE SYNECHOCOCCUS AND PROCHLOROCOCCUS (CYANOBACTERIA) 1 , 2007 .

[116]  P. Harrison,et al.  Coupled changes in the cell morphology and elemental (C, N, and Si) composition of the pennate diatom Pseudo‐nitzschia due to iron deficiency , 2007 .

[117]  H. Bouman,et al.  Oceanographic Basis of the Global Surface Distribution of Prochlorococcus Ecotypes , 2006, Science.

[118]  B. Wanner Gene regulation by phosphate in enteric bacteria , 1993, Journal of cellular biochemistry.

[119]  Roman Marin,et al.  Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages , 2014, Science.

[120]  I. Davison ENVIRONMENTAL EFFECTS ON ALGAL PHOTOSYNTHESIS: TEMPERATURE , 1991 .

[121]  E. Boyle,et al.  Phosphate depletion in the western North Atlantic Ocean. , 2000, Science.

[122]  Timothy M Lenton,et al.  Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N : P ratio. , 2014, Ecology letters.

[123]  Y. Tezuka Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates , 1990, Microbial Ecology.

[124]  P. Fink,et al.  To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs , 2010 .

[125]  D. Pope,et al.  Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens , 1978, Journal of bacteriology.

[126]  D. H. Robinson,et al.  Phytoplankton community structure and the drawdown of nutrients and CO2 in the southern ocean , 1999, Science.

[127]  Adam C. Martiny,et al.  A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems , 2015, Proceedings of the National Academy of Sciences.

[128]  G. Rhee Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake 1 , 1978 .

[129]  Mridul K. Thomas,et al.  Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton , 2012 .

[130]  F. Azam,et al.  Protein content and protein synthesis rates of planktonic marine bacteria , 1989 .

[131]  Katarina Vrede,et al.  Elemental Composition (C, N, P) and Cell Volume of Exponentially Growing and Nutrient-Limited Bacterioplankton , 2002, Applied and Environmental Microbiology.

[132]  Maureen L. Coleman,et al.  Transcriptome and Proteome Dynamics of a Light-Dark Synchronized Bacterial Cell Cycle , 2012, PloS one.

[133]  G. Ågren The C:N:P stoichiometry of autotrophs: Theory and observations , 2004 .

[134]  U. Sommer,et al.  STOICHIOMETRIC RESPONSES OF PHYTOPLANKTON SPECIES TO THE INTERACTIVE EFFECT OF NUTRIENT SUPPLY RATIOS AND GROWTH RATES 1 , 2012, Journal of phycology.

[135]  J. A. Bonachela,et al.  Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus , 2016, The ISME Journal.

[136]  Nicolas Gruber,et al.  Denitrification and N2 fixation in the Pacific Ocean , 2001 .

[137]  S. A. Conover Partitioning of nitrogen and carbon in cultures of the marine diatom Thalassiosira fluviatilis supplied with nitrate, ammonium, or urea , 1975 .

[138]  C. Deutsch,et al.  Ocean nutrient ratios governed by plankton biogeography , 2010, Nature.

[139]  Elena Litchman,et al.  Phytoplankton growth and stoichiometry under multiple nutrient limitation , 2004 .

[140]  D. Kreeger,et al.  EFFECT OF NUTRIENT AVAILABILITY ON THE BIOCHEMICAL AND ELEMENTAL STOICHIOMETRY IN THE FRESHWATER DIATOM STEPHANODISCUS MINUTULUS (BACILLARIOPHYCEAE)* , 2000, Journal of phycology.

[141]  Growth regulation in irradiance limited marine Synechococcus sp. WH 7803 , 1990, Archives of Microbiology.

[142]  A. Kornberg Inorganic polyphosphate: a molecule of many functions. , 2003, Annual review of biochemistry.

[143]  S. Levin,et al.  A model for variable phytoplankton stoichiometry based on cell protein regulation , 2013 .

[144]  D. Tempest,et al.  The influence of temperature and pH value on the macro-molecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenes growing in a chemostat. , 1965, Journal of general microbiology.

[145]  Nicolas Gruber,et al.  Spatial coupling of nitrogen inputs and losses in the ocean , 2007, Nature.

[146]  J. Cotner,et al.  Phosphorus-limited bacterioplankton growth in the Sargasso Sea , 1997 .

[147]  Curtis Deutsch,et al.  Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation , 2012, Nature.

[148]  Z. Johnson,et al.  In situ activity of a dominant Prochlorococcus ecotype (eHL-II) from rRNA content and cell size. , 2013, Environmental microbiology.

[149]  P. Falkowski,et al.  Irradiance and the elemental stoichiometry of marine phytoplankton , 2006 .

[150]  R. Wetzel,et al.  Uptake of dissolved inorganic and organic bphosphorus compounds by phytoplankton and bacterioplankton , 1992 .

[151]  Christopher M. Brown,et al.  Phylogenetic Diversity in the Macromolecular Composition of Microalgae , 2016, PloS one.

[152]  J. C. Goldman,et al.  Growth rate influence on the chemical composition of phytoplankton in oceanic waters , 1979, Nature.

[153]  S. John,et al.  The effect of iron limitation on cyanobacteria major nutrient and trace element stoichiometry , 2017 .

[154]  Stanford B. Hooker,et al.  Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production , 2002 .

[155]  D. Karl,et al.  Polyphosphate dynamics at Station ALOHA, North Pacific subtropical gyre , 2016 .

[156]  Michael W. Lomas,et al.  Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter , 2014 .

[157]  M. Lomas,et al.  Stoichiometry of Prochlorococcus, Synechococcus, and small eukaryotic populations in the western North Atlantic Ocean , 2017, Environmental microbiology.

[158]  S. Chisholm,et al.  LIGHT/DARK‐PHASED CELL DIVISION IN EUGLENA GRACILIS (Z) (EUGLENOPHYCEAE) IN PO4‐LIMITED CONTINUOUS CULTURE 1 , 1975 .

[159]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.