On the finite element approximation of a semicoercive Stokes variational inequality arising in glaciology

Stokes variational inequalities arise in the formulation of glaciological problems involving contact. Two important examples of such problems are that of the grounding line of a marine ice sheet and the evolution of a subglacial cavity. In general, rigid modes are present in the velocity space, rendering the variational inequality semicoercive. In this work, we consider a mixed formulation of this variational inequality involving a Lagrange multiplier and provide an analysis of its finite element approximation. Error estimates in the presence of rigid modes are obtained by means of a novel technique involving metric projections onto closed convex cones. Numerical results are reported to validate the error estimates and demonstrate the advantages of using a mixed formulation in a glaciological application.

[1]  O. Gagliardini,et al.  Sliding Relations for Glacier Slip With Cavities Over Three‐Dimensional Beds , 2020, Geophysical Research Letters.

[2]  L. R. Scott,et al.  A quasi-local interpolation operator¶preserving the discrete divergence , 2003 .

[3]  J. Weertman,et al.  Stability of the Junction of an Ice Sheet and an Ice Shelf , 1974, Journal of Glaciology.

[4]  Error estimates for the approximation of semicoercive variational inequalities , 1994 .

[5]  Lars Diening,et al.  On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..

[6]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[7]  QINGSHAN CHEN,et al.  Well-Posedness Results for a Nonlinear Stokes Problem Arising in Glaciology , 2013, SIAM J. Math. Anal..

[8]  Christian Schoof,et al.  The effect of cavitation on glacier sliding , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  L. Lliboutry General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers , 1968, Journal of Glaciology.

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[12]  Finite element analysis of primal and dual variational formulations of semicoercive elliptic problems with nonhomogeneous obstacles on the boundary , 1988 .

[13]  G. Burton Sobolev Spaces , 2013 .

[14]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[15]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[16]  Jean-Luc Guermond,et al.  Finite element quasi-interpolation and best approximation , 2015, 1505.06931.

[17]  P. Råback,et al.  Correction to “Finite‐element modeling of subglacial cavities and related friction law” , 2007 .

[18]  C. Schoof Ice sheet grounding line dynamics: Steady states, stability, and hysteresis , 2007 .

[19]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[20]  C. Schoof COULOMB FRICTION AND OTHER SLIDING LAWS IN A HIGHER-ORDER GLACIER FLOW MODEL , 2010 .

[21]  T. Zwinger,et al.  Marine ice sheet dynamics: Hysteresis and neutral equilibrium , 2009 .

[22]  J. Gwinner,et al.  Discretization of semicoercive variational inequalities , 1991 .

[23]  Thomas Zwinger,et al.  A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf , 2011 .

[24]  N. Iverson,et al.  Rate‐weakening drag during glacier sliding , 2016 .

[25]  Samir Adly,et al.  A discretization theory for a class of semi-coercive unilateral problems , 2000, Numerische Mathematik.

[26]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[27]  A. Fowler A sliding law for glaciers of constant viscosity in the presence of subglacial cavitation , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[29]  R. Hindmarsh Qualitative Dynamics of Marine Ice Sheets , 1993 .

[30]  Adrian Hirn,et al.  Approximation of the p-Stokes Equations with Equal-Order Finite Elements , 2013 .

[31]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[32]  M. M. Marsh,et al.  Projections onto cones in Banach spaces , 2018 .

[33]  Guillaume Jouvet Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers , 2010 .

[34]  O. Gagliardini,et al.  The stability of grounding lines on retrograde slopes , 2012 .

[35]  J. Gwinner,et al.  On Semicoercive Variational-Hemivariational Inequalities—Existence, Approximation, and Regularization , 2018 .

[36]  Gaël Durand,et al.  Potential sea-level rise from Antarctic ice-sheet instability constrained by observations , 2015, Nature.

[37]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[38]  Jacques Rappaz,et al.  Analysis and Finite Element Approximation of a Nonlinear Stationary Stokes Problem Arising in Glaciology , 2011, Adv. Numer. Anal..

[39]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[40]  J. Donges,et al.  The hysteresis of the Antarctic Ice Sheet , 2020, Nature.