CdSe(ZnS) nanocomposite luminescent high temperature sensor

High temperature luminescence-based sensing is demonstrated by embedding colloidal CdSe(ZnS) quantum dots into a high temperature SiO(2) dielectric matrix. The nanocomposite was fabricated by a solution process method. As-prepared CdSe(ZnS) quantum dots in the nanocomposite sensor show an absorption band at a wavelength of 600 nm (2.06 eV). Photoluminescence (PL) measurements show a room temperature emission peak at 606 nm (2.04 eV). The temperature-dependent emission spectra study shows for the first time a CdSe(ZnS)-SiO(2) nanocomposite-based high temperature sensor. The temperature-dependent spectral and intensity modes of the nanocomposite thin film photoluminescence were investigated from 295-525 K. The sensor shows a variation of the emission wavelength as a function of temperature with a sensitivity of ∼ 0.11 nm °C( - 1). The film morphology and roughness are characterized using AFM.

[1]  Tae Geun Kim,et al.  Tuning the energy bandgap of CdSe nanocrystals via Mg doping , 2007 .

[2]  Janez Mozina,et al.  Design aspects of an alexandrite fluorescence lifetime fiber optic thermometer , 1998, Optical Fibre Sensors.

[3]  Kenneth T. V. Grattan,et al.  Fiber‐optic high‐temperature sensor based on the fluorescence lifetime of alexandrite , 1992 .

[4]  François Hache,et al.  Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions , 1993 .

[5]  M. O. Manasreh,et al.  Temperature dependence of the band gap of colloidal CdSe∕ZnS core/shell nanocrystals embedded into an ultraviolet curable resin , 2006 .

[6]  Zhifeng Li,et al.  Photoluminescence investigation of CdSe quantum dots and the surface state effect , 2005 .

[7]  Hiroshi Yokoyama,et al.  Temperature-sensitive photoluminescence of CdSe quantum dot clusters. , 2005, The journal of physical chemistry. B.

[8]  U. Woggon,et al.  Optical transitions in CdSe quantum dots: From discrete levels to broad gain spectra , 1996 .

[9]  C. Thomsen,et al.  Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods , 2008 .

[10]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[11]  Igor Nabiev,et al.  Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots , 2003 .

[12]  I.R. Matias,et al.  Quantum Dots-Based Optical Fiber Temperature Sensors Fabricated by Layer-by-Layer , 2006, IEEE Sensors Journal.

[13]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[14]  Elfed Lewis,et al.  Review of luminescent based fibre optic temperature sensors , 2005 .

[15]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[16]  Roberto Cingolani,et al.  Temperature dependence of the photoluminescence properties of colloidal Cd Se ∕ Zn S core/shell quantum dots embedded in a polystyrene matrix , 2005 .

[17]  U. Woggon,et al.  Temperature-dependent line widths of single excitons and biexcitons , 2000 .

[18]  Vikram C. Sundar,et al.  Quantum-dot optical temperature probes , 2003 .

[19]  Tetyana V. Torchynska,et al.  Photoluminescence of core‐shell CdSe/ZnS quantum dots of different sizes , 2009 .

[20]  Temperature dependent exciton linewidths in quantum wells , 1987 .

[21]  Shuming Nie,et al.  Semiconductor nanocrystals: structure, properties, and band gap engineering. , 2010, Accounts of chemical research.

[22]  Mool C. Gupta,et al.  Spectroscopy of BeAl(2)O(4):Cr(3+) with application to high-temperature sensing. , 2010, Applied optics.

[23]  Konstantinos Kontis,et al.  Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications , 2008, Sensors.

[24]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[25]  Rudin,et al.  Temperature-dependent exciton linewidths in semiconductors. , 1990, Physical review. B, Condensed matter.

[26]  P. Holloway,et al.  Quantum Dots and Their Multimodal Applications: A Review , 2010, Materials.

[27]  Arai,et al.  Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures. , 1996, Physical review. B, Condensed matter.

[28]  Zhang Li-gong,et al.  Exciton-Phonon Scattering in CdSe/ZnSe Quantum Dots , 2002 .