In vivo optical frequency domain imaging of human retina and choroid.

Optical frequency domain imaging (OFDI) using swept laser sources is an emerging second-generation method for optical coherence tomography (OCT). Despite the widespread use of conventional OCT for retinal disease diagnostics, until now imaging the posterior eye segment with OFDI has not been possible. Here we report the development of a highperformance swept laser at 1050 nm and an ophthalmic OFDI system that offers an A-line rate of 18.8 kHz, sensitivity of >92 dB over a depth range of 2.4 mm with an optical exposure level of 550 muW, and deep penetration into the choroid. Using these new technologies, we demonstrate comprehensive human retina, optic disc, and choroid imaging in vivo. This advance enables us to view choroidal vasculature in vivo without intravenous injection of fluorescent dyes and may provide a useful tool for evaluating choroidal as well as retinal diseases.

[1]  General Ophthalmology , 1969 .

[2]  R C Pruett,et al.  Monochromatic ophthalmoscopy and fundus photography. The normal fundus. , 1977, Archives of ophthalmology.

[3]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[4]  D. J. Segelstein The complex refractive index of water , 1981 .

[5]  A. Nuttall Some windows with very good sidelobe behavior , 1981 .

[6]  R. Ulrich,et al.  Optical frequency domain reflectometry in single‐mode fiber , 1981 .

[7]  D. Davies,et al.  Optical coherence-domain reflectometry: a new optical evaluation technique. , 1987, Optics letters.

[8]  R. Webb,et al.  Confocal scanning laser ophthalmoscope. , 1987, Applied optics.

[9]  K. Takada,et al.  New measurement system for fault location in optical waveguide devices based on an interferometric technique. , 1987, Applied optics.

[10]  A. Fercher,et al.  Eye-length measurement by interferometry with partially coherent light. , 1988, Optics letters.

[11]  E. Brinkmeyer,et al.  Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems , 1989 .

[12]  T. Olsen,et al.  The accuracy of ultrasonic determination of axial length in pseudophakic eyes , 1989, Acta ophthalmologica.

[13]  E. Brinkmeyer,et al.  High-resolution OCDR in dispersive waveguides , 1990 .

[14]  Barry R. Masters,et al.  Noninvasive Diagnostic Techniques in Ophthalmology , 1990, Springer New York.

[15]  F. Foster,et al.  Clinical use of ultrasound biomicroscopy. , 1991, Ophthalmology.

[16]  C. Myatt,et al.  External-cavity diode laser using a grazing-incidence diffraction grating. , 1991, Optics letters.

[17]  J. Fujimoto,et al.  Micron‐resolution ranging of cornea anterior chamber by optical reflectometry , 1991, Lasers in surgery and medicine.

[18]  K. Yukimatsu,et al.  Rayleigh backscattering measurement of single‐mode fibers by low coherence optical time‐domain reflectometer with 14 μm spatial resolution , 1991 .

[19]  B. Lemoff,et al.  Cubic-phase-free dispersion compensation in solid-state ultrashort-pulse lasers. , 1993, Optics letters.

[20]  A. Fercher,et al.  In vivo optical coherence tomography. , 1993, American journal of ophthalmology.

[21]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[22]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[23]  E Reichel,et al.  Quantitative assessment of macular edema with optical coherence tomography. , 1995, Archives of ophthalmology.

[24]  E Reichel,et al.  Optical coherence tomography of central serous chorioretinopathy. , 1995, American journal of ophthalmology.

[25]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[26]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[27]  J. Duker,et al.  Optical coherence tomography of macular lesions associated with optic nerve head pits. , 1996, Ophthalmology.

[28]  E Reichel,et al.  Characterization of epiretinal membranes using optical coherence tomography. , 1996, Ophthalmology.

[29]  J. Duker,et al.  Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. , 1996, Ophthalmology.

[30]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[31]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[32]  P. Sharp,et al.  The scanning laser ophthalmoscope. , 1997, Physics in medicine and biology.

[33]  B. Kim,et al.  Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. , 1998, Optics letters.

[34]  R Ritch,et al.  Reproducibility of retinal thickness measurements in normal eyes using optical coherence tomography. , 1998, Ophthalmic surgery and lasers.

[35]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[36]  E Reichel,et al.  Topography of diabetic macular edema with optical coherence tomography. , 1998, Ophthalmology.

[37]  J. Demer,et al.  Nonvascular contractile cells in sclera and choroid of humans and monkeys. , 1998, Investigative ophthalmology & visual science.

[38]  K Rohrschneider,et al.  Simultaneous confocal scanning laser fluorescein and indocyanine green angiography. , 1998, American journal of ophthalmology.

[39]  Z. Chen,et al.  [Optical coherence tomography of macular holes]. , 1999, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology.

[40]  J. Izatt,et al.  Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. , 2000, Optics letters.

[41]  Jung Ah Choi Lee,et al.  Spatially variant apodization for image reconstruction from partial Fourier data , 2000, IEEE Trans. Image Process..

[42]  E. Herderick,et al.  Intersession repeatability of macular thickness measurements with the Humphrey 2000 OCT. , 2000, Investigative ophthalmology & visual science.

[43]  C. Dorrer,et al.  Spectral resolution and sampling issues in Fourier-transform spectral interferometry , 2000 .

[44]  Kim L. Boyer,et al.  Retinal thickness measurements from optical coherence tomography using a Markov boundary model , 2001, IEEE Transactions on Medical Imaging.

[45]  J. Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source , 2001 .

[46]  J. Nelson,et al.  Stable carrier generation and phase-resolved digital data processing in optical coherence tomography. , 2001, Applied optics.

[47]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[48]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[49]  Robert J. Zawadzki,et al.  Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique , 2002 .

[50]  A. Fercher,et al.  Full range complex spectral optical coherence tomography technique in eye imaging. , 2002, Optics letters.

[51]  W. Goebel,et al.  RETINAL THICKNESS IN DIABETIC RETINOPATHY: A Study Using Optical Coherence Tomography (OCT) , 2002, Retina.

[52]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[53]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[54]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[55]  I Hartl,et al.  Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber. , 2003, Optics express.

[56]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[57]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[58]  Ton G van Leeuwen,et al.  Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. , 2003, Optics letters.

[59]  Qienyuan Zhou,et al.  Three-dimensional imaging of the human retina by high-speed optical coherence tomography. , 2003, Optics express.

[60]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[61]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[62]  Pablo Gili Manzanaro,et al.  Ophthalmic Photography: Retinal photography, Angiography, and Electronic Imaging , 2004 .

[63]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[64]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[65]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[66]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[67]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[68]  S. Yun,et al.  Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. , 2004, Optics express.

[69]  P. Gouras,et al.  Assessing macular pigment from SLO images , 2004, Documenta Ophthalmologica.

[70]  L. Yannuzzi,et al.  Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. , 2004, Journal of biomedical optics.

[71]  Ultra-high speed and ultra-high resolution optical coherence tomography and optical Doppler tomography , 2004 .

[72]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[73]  James G Fujimoto,et al.  Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. , 2005, Optics express.

[74]  Teresa C. Chen,et al.  Retinal nerve fiber layer thickness map determined from optical coherence tomography images. , 2005, Optics express.

[75]  Zhongping Chen,et al.  Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm. , 2005, Optics letters.

[76]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[77]  A. Bjarklev,et al.  Swept-wavelength sources for optical coherence tomography in the 1 μm range , 2005, European Conference on Biomedical Optics.

[78]  Shuliang Jiao,et al.  Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. , 2005, Optics express.

[79]  Jun Zhang,et al.  In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. , 2005, Optics express.

[80]  Frank G Holz,et al.  DIGITAL SIMULTANEOUS FLUORESCEIN AND INDOCYANINE GREEN ANGIOGRAPHY, AUTOFLUORESCENCE, AND RED-FREE IMAGING WITH A SOLID-STATE LASER-BASED CONFOCAL SCANNING LASER OPHTHALMOSCOPE , 2005, Retina.

[81]  M. Reim,et al.  Video fluorescein angiography: Method and clinical application , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[82]  W. Drexler,et al.  In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. , 2005, Optics express.

[83]  S. Yun,et al.  Phase-resolved optical frequency domain imaging. , 2005, Optics express.

[84]  J. Fujimoto,et al.  Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.

[85]  Swept-Wavelength Source for Optical Coherence Tomography in the 1 µm Range , 2005 .

[86]  Hiroshi Ishikawa,et al.  Macular segmentation with optical coherence tomography. , 2005, Investigative ophthalmology & visual science.

[87]  S. Yun,et al.  Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring , 2006 .

[88]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[89]  V. R. Shidlovski,et al.  NIR semiconductor laser with fast broadband tuning , 2006, SPIE BiOS.

[90]  Brian Culshaw,et al.  The optical fibre Sagnac interferometer: an overview of its principles and applications , 2005 .

[91]  S. Yun,et al.  Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. , 2006, Optics express.