Entropy of Hidden Markov Processes via Cycle Expansion

Hidden Markov Processes (HMP) is one of the basic tools of the modern probabilistic modeling. The characterization of their entropy remains however an open problem. Here the entropy of HMP is calculated via the cycle expansion of the zeta-function, a method adopted from the theory of dynamical systems. For a class of HMP this method produces exact results both for the entropy and the moment-generating function. The latter allows to estimate, via the Chernoff bound, the probabilities of large deviations for the HMP. More generally, the method offers a representation of the moment-generating function and of the entropy via convergent series.

[1]  James Ledoux,et al.  Markov property for a function of a Markov chain: A linear algebra approach , 2005 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  L. Goddard Information Theory , 1962, Nature.

[4]  Vladimir B. Balakirsky,et al.  On the entropy rate of a hidden Markov model , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[5]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[6]  Angelo Vulpiani,et al.  Products of Random Matrices , 1993 .

[7]  John J. Birch Approximations for the Entropy for Functions of Markov Chains , 1962 .

[8]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[9]  Erik Aurell,et al.  Convergence of dynamical zeta functions , 1990 .

[10]  L. Arnold,et al.  Evolutionary Formalism for Products of Positive Random Matrices , 1994 .

[11]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[12]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[13]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[14]  J. Kingman Subadditive Ergodic Theory , 1973 .

[15]  T. Koski Hidden Markov Models for Bioinformatics , 2001 .

[16]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  Mohammad Rezaeian Hidden Markov Process: A New Representation, Entropy Rate and Estimation Entropy , 2006, ArXiv.

[19]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[20]  Eytan Domany,et al.  The Entropy of a Binary Hidden Markov Process , 2005, ArXiv.

[21]  I Ya Gol'dsheid,et al.  Lyapunov indices of a product of random matrices , 1989 .

[22]  Eytan Domany,et al.  From Finite-System Entropy to Entropy Rate for a Hidden Markov Process , 2006, IEEE Signal Processing Letters.

[23]  Steven A. Orszag,et al.  Stability and Lyapunov stability of dynamical systems: A differential approach and a numerical method , 1987 .

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  Andrea J. Goldsmith,et al.  Capacity of Finite State Channels Based on Lyapunov Exponents of Random Matrices , 2006, IEEE Transactions on Information Theory.

[26]  Philippe Jacquet,et al.  On the entropy of a hidden Markov process , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[27]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[28]  Joost Zaat Chaos (2) , 2005 .

[29]  P. Halmos Lectures on ergodic theory , 1956 .

[30]  Ronnie Mainieri,et al.  Cycle expansion for the Lyapunov exponent of a product of random matrices. , 1992, Chaos.

[31]  Brian H. Marcus,et al.  Analyticity of Entropy Rate of Hidden Markov Chains , 2005, IEEE Transactions on Information Theory.

[32]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[33]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[34]  Leonid Kontorovich Measure Concentration of Hidden Markov Processes , 2006 .

[35]  Tsachy Weissman,et al.  On the optimality of symbol-by-symbol filtering and denoising , 2004, IEEE Transactions on Information Theory.