A tandem fluid queue with gradual input

For a two-node tandem fluid model with gradual input, we compute the joint steady-state buffer-content distribution. Our proof exploits martingale methods developed by Kella \& Whitt. For the case of finite buffers, we use an insightful sample-path argument to find a proportionality result.

[1]  Sem C. Borst,et al.  Generalised processor sharing networks fed by heavy-tailed traffic flows , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[2]  A. Zwart A fluid queue with a finite buffer and subexponential input , 2000, Advances in Applied Probability.

[3]  Michael Shalmon,et al.  A Tandem Network of Queues with Deterministic Service and Intermediate Arrivals , 1984, Oper. Res..

[4]  Samuli Aalto,et al.  Tandem fluid queues fed by homogeneous on-off sources , 2000, Oper. Res. Lett..

[5]  Onno J. Boxma,et al.  Fluid queues with long-tailed activity period distributions , 1997, Comput. Commun..

[6]  Onno Boxma,et al.  Fluid queues and mountain processes , 1998 .

[7]  Izhak Rubin,et al.  Path delays in communication networks , 1975 .

[8]  Henk C. Tijms,et al.  Computing Loss Probabilities in Discrete-Time Queues , 1998, Oper. Res..

[9]  Shaler Stidham,et al.  Clearing Systems and (s, S) Inventory Systems with Nonlinear Costs and Positive Lead Times , 1986, Oper. Res..

[10]  Ward Whitt,et al.  A Storage Model with a Two-State Random Environment , 1992, Oper. Res..

[11]  Upendra Dave,et al.  Applied Probability and Queues , 1987 .

[12]  W. Whitt,et al.  Multidimensional Transform Inversion with Applications to the Transient M/G/1 Queue , 1994 .

[13]  Nam Kyoo Boots,et al.  A Multiserver Queueing System with Impatient Customers , 1999 .

[14]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[15]  Julian Keilson,et al.  The M/G/1/K blocking formula and its generalizations to state-dependent vacation systems and priority systems , 1993, Queueing Syst. Theory Appl..

[16]  Offer Kella Markov-modulated Feedforward Fluid Networks , 2001, Queueing Syst. Theory Appl..

[17]  Nam Kyoo Boots,et al.  AnM/M/c queue with impatient customers , 1999 .

[18]  G. Hooghiemstra A Path Construction for the Virtual Waiting Time of an M/G/1 Queue , 1987 .

[19]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[20]  Onno J. Boxma,et al.  Tandem queues with deterministic service times , 1994, Ann. Oper. Res..

[21]  O. Kella Parallel and Tandem Fluid Networks with Dependent Levy Inputs , 1993 .

[22]  Julian Keilson,et al.  Blocking Probability for M/G/1 Vacation Systems with Occupancy Level Dependent Schedules , 1989, Oper. Res..

[23]  Onno Boxma,et al.  AN INTERMITTENT FLUID SYSTEM WITH EXPONENTIAL ON-TIMES AND SEMI-MARKOV INPUT RATES , 2001, Probability in the Engineering and Informational Sciences.

[24]  W. R. Scheinhardt,et al.  Markov-modulated and feedback fluid queues , 1998 .

[25]  Dirk P. Kroese,et al.  Joint Distributions for Interacting Fluid Queues , 2001, Queueing Syst. Theory Appl..

[26]  Jacob Cohen,et al.  On regenerative processes in queueing theory , 1976 .