Chemical Synthesis of On Demand-Activated SUMO-Based Probe by a Photocaged Glycine-Assisted Strategy.

[1]  J. Bode,et al.  Installation of electrophiles onto the C-terminus of recombinant ubiquitin and ubiquitin-like proteins , 2022, Chemical Science.

[2]  Yiming Li,et al.  Semi-synthesis of biotin-bearing activity-based Ubiquitin probes through sequential enzymatic ligation, N-S acyl transfer and aminolysis reaction , 2022, Chinese Chemical Letters.

[3]  Suwen Zhao,et al.  H2B Lys34 Ubiquitination Induces Nucleosome Distortion to Stimulate Dot1L Activity , 2022, Nature Chemical Biology.

[4]  Xianbin Meng,et al.  Photocaging of Activity-based Ubiquitin Probes via a C-Terminal Backbone Modification Strategy. , 2022, Angewandte Chemie.

[5]  Zhongneng Zhou,et al.  Quinoline-Based Photolabile Protection Strategy Facilitates Efficient Protein Assembly. , 2022, Journal of the American Chemical Society.

[6]  Dong Si,et al.  Structural insights into Ubr1-mediated N-degron polyubiquitination , 2021, Nature.

[7]  C. Zhong,et al.  Facile Generation of Strained Peptidyl Thiolactones from Hydrazides and Its Application in Assembling MUC ‐1 VNTR Oligomers † , 2021, Chinese Journal of Chemistry.

[8]  Lei Liu,et al.  Use of a Removable Backbone Modification Strategy to Prevent Aspartimide Formation in the Synthesis of Asp Lactam Cyclic Peptides † , 2021, Chinese Journal of Chemistry.

[9]  Lei Liu,et al.  Chemical synthesis of activity-based E2-ubiquitin probes for the structural analysis of E3 ligase-catalyzed transthiolation. , 2021, Angewandte Chemie.

[10]  Lei Liu,et al.  Chemical Synthesis of diSUMO Photoaffinity Probes for the Identification of PolySUMO Chain-Specific Interacting Proteins , 2021, CCS Chemistry.

[11]  Zhihao Zhuang,et al.  Photocaged Cell-Permeable Ubiquitin Probe for Temporal Profiling of Deubiquitinating Enzymes. , 2020, Journal of the American Chemical Society.

[12]  S. Müller,et al.  The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. , 2020, Molecular cell.

[13]  J. Bode,et al.  Prevention of aspartimide formation during peptide synthesis using cyanosulfurylides as carboxylic acid-protecting groups , 2020, Nature Communications.

[14]  J. McGouran,et al.  Probing enzymatic activity – a radical approach† , 2020, Chemical science.

[15]  Yiming Li,et al.  Chemical Synthesis of Structurally Defined Phosphorylated Ubiquitins Suggests Impaired Parkin Activation by Phosphorylated Ubiquitins with a Non-Phosphorylated Distal Unit , 2019 .

[16]  T. Hirota,et al.  Chemical Synthesis of Atomically Tailored SUMO E2 Conjugating Enzymes for the Formation of Covalently Linked SUMO-E2-E3 Ligase Ternary Complexes. , 2019, Journal of the American Chemical Society.

[17]  Ping Wang,et al.  Chemical Protein Synthesis by Native Chemical Ligation and Variations Thereof , 2019, Chinese Journal of Chemistry.

[18]  Yi‐Ming Li,et al.  Semi-synthesis of Ubiquitin-propargylamide for identifying deubiquitinase targeting inhibitors , 2019, Chinese Chemical Letters.

[19]  Zhihao Zhuang,et al.  Cell-Permeable Activity-Based Ubiquitin Probes Enable Intracellular Profiling of Human Deubiquitinases. , 2018, Journal of the American Chemical Society.

[20]  D. Bierer,et al.  Synthesis of Peptide Disulfide-Bond Mimics by Using Fully Orthogonally Protected Diaminodiacids. , 2018, Organic letters.

[21]  H. Ovaa,et al.  Total Chemical Synthesis of SUMO and SUMO‐Based Probes for Profiling the Activity of SUMO‐Specific Proteases , 2018, Angewandte Chemie.

[22]  S. Müller,et al.  SUMO-specific proteases and isopeptidases of the SENP family at a glance , 2018, Journal of Cell Science.

[23]  Anselm F. L. Schneider,et al.  Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. , 2017, Nature chemistry.

[24]  C. Lima,et al.  Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism , 2017, Chemical reviews.

[25]  A. Dejean,et al.  SUMO and the robustness of cancer , 2017, Nature Reviews Cancer.

[26]  A. Vertegaal,et al.  A comprehensive compilation of SUMO proteomics , 2016, Nature Reviews Molecular Cell Biology.

[27]  Lei Liu,et al.  Quasi-Racemic X-ray Structures of K27-Linked Ubiquitin Chains Prepared by Total Chemical Synthesis. , 2016, Journal of the American Chemical Society.

[28]  G. Papageorgiou,et al.  A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation , 2016, Journal of peptide science : an official publication of the European Peptide Society.

[29]  David Komander,et al.  Ubiquitin modifications , 2016, Cell Research.

[30]  P. White,et al.  Advances in Fmoc solid‐phase peptide synthesis , 2016, Journal of peptide science : an official publication of the European Peptide Society.

[31]  C. Lima,et al.  Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase , 2015, Nature Structural &Molecular Biology.

[32]  Jing Cheng,et al.  An efficient one-pot four-segment condensation method for protein chemical synthesis. , 2015, Angewandte Chemie.

[33]  S. Müller,et al.  SUMO-specific proteases/isopeptidases: SENPs and beyond , 2014, Genome Biology.

[34]  Yiming Li,et al.  Irreversible site-specific hydrazinolysis of proteins by use of sortase. , 2014, Angewandte Chemie.

[35]  F. Melchior,et al.  Sumoylation: a regulatory protein modification in health and disease. , 2013, Annual review of biochemistry.

[36]  H. Mootz,et al.  Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. , 2013, Bioorganic & medicinal chemistry.

[37]  D. Ye,et al.  Overexpression of SENP3 in oral squamous cell carcinoma and its association with differentiation , 2013, Oncology reports.

[38]  Christopher M Hickey,et al.  Function and regulation of SUMO proteases , 2012, Nature Reviews Molecular Cell Biology.

[39]  Lei Liu,et al.  Convergent chemical synthesis of proteins by ligation of peptide hydrazides. , 2012, Angewandte Chemie.

[40]  Guy S. Salvesen,et al.  Glycine Fluoromethylketones as SENP‐Specific Activity Based Probes , 2012, Chembiochem : a European journal of chemical biology.

[41]  Lei Liu,et al.  Protein chemical synthesis by ligation of peptide hydrazides. , 2011, Angewandte Chemie.

[42]  Jaclyn R. Gareau,et al.  The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition , 2010, Nature Reviews Molecular Cell Biology.

[43]  Jinke Cheng,et al.  SENP1 Induces Prostatic Intraepithelial Neoplasia through Multiple Mechanisms* , 2010, The Journal of Biological Chemistry.

[44]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[45]  C. Lima,et al.  Structure of the Human SENP7 Catalytic Domain and Poly-SUMO Deconjugation Activities for SENP6 and SENP7* , 2008, Journal of Biological Chemistry.

[46]  James H Naismith,et al.  The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. , 2006, The Biochemical journal.

[47]  R. Hay,et al.  SUMO: a history of modification. , 2005, Molecular cell.

[48]  C. Lima,et al.  Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1 , 2005, The EMBO journal.

[49]  H. Ploegh,et al.  Specific and Covalent Targeting of Conjugating and Deconjugating Enzymes of Ubiquitin-Like Proteins , 2004, Molecular and Cellular Biology.

[50]  T. Nishigaki,et al.  A caged sperm‐activating peptide that has a photocleavable protecting group on the backbone amide , 2002, FEBS letters.

[51]  H. Saitoh,et al.  Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3* , 2000, The Journal of Biological Chemistry.

[52]  Nigus D. Ambaye Noncovalent structure of SENP1 in complex with SUMO2. , 2019, Acta crystallographica. Section F, Structural biology communications.

[53]  A. Brik,et al.  Palladium Mediated Cleavage of Thiazolidine Backbone Modified Proteins in Live Cells. , 2019, Angewandte Chemie.