Disease mapping and spatial regression with count data.

In this paper, we provide critical reviews of methods suggested for the analysis of aggregate count data in the context of disease mapping and spatial regression. We introduce a new method for picking prior distributions, and propose a number of refinements of previously used models. We also consider ecological bias, mutual standardization, and choice of both spatial model and prior specification. We analyze male lip cancer incidence data collected in Scotland over the period 1975-1980, and outline a number of problems with previous analyses of these data. In disease mapping studies, hierarchical models can provide robust estimation of area-level risk parameters, though care is required in the choice of covariate model, and it is important to assess the sensitivity of estimates to the spatial model chosen, and to the prior specifications on the variance parameters. Spatial ecological regression is a far more hazardous enterprise for two reasons. First, there is always the possibility of ecological bias, and this can only be alleviated by the inclusion of individual-level data. For the Scottish data, we show that the previously used mean model has limited interpretation from an individual perspective. Second, when residual spatial dependence is modeled, and if the exposure has spatial structure, then estimates of exposure association parameters will change when compared with those obtained from the independence across space model, and the data alone cannot choose the form and extent of spatial correlation that is appropriate.

[1]  N. Cressie,et al.  Spatial Modeling of Regional Variables , 1993 .

[2]  Frank J. Bove,et al.  AN ECOLOGIC STUDY , 1987 .

[3]  B. Cohen,et al.  Divergent biases in ecologic and individual level studies. , 1995, Statistics in medicine.

[4]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data , 2004 .

[5]  J. Forster Ecological inference for 2 × 2 tables - Discussion , 2004 .

[6]  E. Lesaffre,et al.  Disease mapping and risk assessment for public health. , 1999 .

[7]  S Greenland,et al.  Ecological bias, confounding, and effect modification. , 1989, International journal of epidemiology.

[8]  L Knorr-Held,et al.  Bayesian Detection of Clusters and Discontinuities in Disease Maps , 2000, Biometrics.

[9]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[10]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[11]  J. Wakefield,et al.  Spatial epidemiology: methods and applications. , 2000 .

[12]  S. Piantadosi,et al.  The ecological fallacy. , 1988, American journal of epidemiology.

[13]  A. Molli'e Bayesian mapping of disease , 1996 .

[14]  William J. Blot,et al.  Atlas of Cancer Mortality in the United States 1950-94 , 2000 .

[15]  P N Price,et al.  Bayesian prediction of mean indoor radon concentrations for Minnesota counties. , 1996, Health physics.

[16]  P. Green,et al.  Hidden Markov Models and Disease Mapping , 2002 .

[17]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[18]  Una Maclean Atlas of Cancer in Scotland 1975-1980. Incidence and Epidemiological Perspective , 1985, IARC scientific publications.

[19]  Sebastien J-P A Haneuse,et al.  The Combination of Ecological and Case-Control Data. , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[20]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[21]  D. Clayton,et al.  Statistical Models in Epidemiology , 1993 .

[22]  R. Tsutakawa,et al.  Empirical Bayes estimation of cancer mortality rates. , 1985, Statistics in medicine.

[23]  P. Green,et al.  Modelling spatially correlated data via mixtures: a Bayesian approach , 2002 .

[24]  D. Clayton,et al.  Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. , 1987, Biometrics.

[25]  J. Besag,et al.  Inference on a collapsed margin in disease mapping. , 2000, Statistics in medicine.

[26]  Bradley P. Carlin,et al.  Fully Model-Based Approaches for Spatially Misaligned Data , 2000 .

[27]  Jon Wakefield,et al.  Sensitivity Analyses for Ecological Regression , 2003, Biometrics.

[28]  L Knorr-Held,et al.  Modelling risk from a disease in time and space. , 1998, Statistics in medicine.

[29]  D Hémon,et al.  Comparison of relative risks obtained in ecological and individual studies: some methodological considerations. , 1987, International journal of epidemiology.

[30]  J. Estève,et al.  Practical approaches to disease mapping , 1996 .

[31]  P Elliott,et al.  Issues in the statistical analysis of small area health data. , 1999, Statistics in medicine.

[32]  R. Waagepetersen,et al.  Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models , 2002, Biometrics.

[33]  Patrick J. Heagerty,et al.  Window Subsampling of Estimating Functions with Application to Regression Models , 2000 .

[34]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[35]  Jon Wakefield,et al.  Ecological inference for 2 × 2 tables , 2004 .

[36]  C Montomoli,et al.  Spatial correlation in ecological analysis. , 1993, International journal of epidemiology.

[37]  Ross L. Prentice,et al.  Aggregate data studies of disease risk factors , 1995 .

[38]  P. Elliott,et al.  Geographical epidemiology of prostate cancer in Great Britain , 2002, International journal of cancer.

[39]  C. Borror Generalized Linear Models and Extensions, Second Edition , 2008 .

[40]  M. Woodbury,et al.  Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. , 1989, Journal of the American Statistical Association.

[41]  L. Bernardinelli,et al.  Bayesian methods for mapping disease risk , 1996 .

[42]  Norman E. Breslow,et al.  Estimation of Disease Rates in Small Areas: A new Mixed Model for Spatial Dependence , 2000 .

[43]  D B Rubin,et al.  Difficulties with regression analyses of age-adjusted rates. , 1984, Biometrics.

[44]  M P Wand,et al.  Negative Binomial Additive Models , 2000, Biometrics.

[45]  Andrew B. Lawson,et al.  Armadale: A Case‐Study in Environmental Epidemiology , 1994 .

[46]  S. Scobie Spatial epidemiology: methods and applications , 2003 .

[47]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[48]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[49]  J Wakefield,et al.  Spatial variation and temporal trends of testicular cancer in Great Britain , 2001, British Journal of Cancer.

[50]  Youngjo Lee,et al.  Modelling and analysing correlated non-normal data , 2001 .

[51]  Sylvia Richardson,et al.  Bayesian mapping of disease , 1995 .

[52]  J. Berger,et al.  Objective Bayesian Analysis of Spatially Correlated Data , 2001 .

[53]  Fredrik Nyberg,et al.  Contribution of environmental factors to cancer risk. , 2003, British medical bulletin.

[54]  N. G. Best,et al.  Spatial Poisson Regression for Health and Exposure Data Measured at Disparate Resolutions , 2000 .

[55]  Sylvia Richardson,et al.  A comparison of Bayesian spatial models for disease mapping , 2005, Statistical methods in medical research.

[56]  S. D. Walter,et al.  Disease mapping: a historical perspective , 2001 .

[57]  I Kleinschmidt,et al.  Cancer incidence near municipal solid waste incinerators in Great Britain , 1996, British Journal of Cancer.

[58]  J. Robins,et al.  Invited commentary: ecologic studies--biases, misconceptions, and counterexamples. , 1994, American journal of epidemiology.

[59]  Subhash R. Lele,et al.  A Regression Method for Spatial Disease Rates: An Estimating Function Approach , 1997 .

[60]  J. Wakefield,et al.  Bayesian approaches to disease mapping , 2001 .

[61]  Chong Gu,et al.  Generalized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection , 2005 .

[62]  L Bernardinelli,et al.  Bayesian estimates of disease maps: how important are priors? , 1995, Statistics in medicine.

[63]  C Guihenneuc-Jouyaux,et al.  Biases in ecological studies: utility of including within-area distribution of confounders. , 2000, Statistics in medicine.

[64]  X. Lin,et al.  Inference in generalized additive mixed modelsby using smoothing splines , 1999 .

[65]  David Clayton,et al.  Estimation of Population Exposure in Ecological Studies , 1996 .

[66]  B G Leroux Modelling spatial disease rates using maximum likelihood. , 2000, Statistics in medicine.

[67]  Jack Cuzick,et al.  Geographical and environmental epidemiology : methods for small-area studies , 1997 .

[68]  T. C. Haas,et al.  Model-based geostatistics - Discussion , 1998 .

[69]  T. C. Haas,et al.  Model-based geostatistics. Discussion. Authors' reply , 1998 .

[70]  J. Wakefield,et al.  Modeling Spatial Variation in Disease Risk , 2002 .

[71]  Sebastien J-P A Haneuse,et al.  Hierarchical Models for Combining Ecological and Case–Control Data , 2007, Biometrics.

[72]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[73]  UsingSmoothing SplinesbyXihong Liny,et al.  Inference in Generalized Additive Mixed Models , 1999 .

[74]  Fabio Divino,et al.  Disease mapping models: an empirical evaluation , 2000 .