Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation

This paper presents a novel robust generalised impedance control methodology for piezo-actuated flexure-based four-bar micro/nano manipulation mechanisms. This control approach is proposed for compliant manipulation in which desired motion and force trajectories are controlled to achieve a specified generalised impedance. The control methodology is also formulated to accommodate not only the parametric uncertainties and unknown force conversion function, but also non-linearities including the hysteresis effect and external disturbances in the motion systems. In this paper, the equations for dynamic modelling of a flexure-hinged four-bar micro/nano mechanism making contact with its environment are established. A lumped parameter dynamic model that combines the piezoelectric actuator and the micro/nano mechanism is established for the formulation of the proposed control methodology. The stability of the control approach is analysed, and the convergence of the tracking errors to achieve the generalised impedance is proven theoretically. Desirable control performances in following the desired motion and force trajectories are demonstrated in the experimental study. An important advantage of this control methodology is that this approach does not require the exact values for the system parameters and the force conversion function in the physical realisation. This proposed compliant manipulation control methodology is useful for the implementation of high performance flexure-based micro/nano manipulation applications demanding for both sensing and control of motion and force trajectories.

[1]  Zhiwei Luo,et al.  Control design of robot for compliant manipulation on dynamic environments , 1993, IEEE Trans. Robotics Autom..

[2]  Kee S. Moon,et al.  Inverse kinematic modeling of a coupled flexure hinge mechanism , 1999 .

[3]  Yonghong Tan,et al.  Modeling hysteresis using hybrid method of continuous transformation and neural networks , 2005 .

[4]  Yonghong Tan,et al.  An inner product-based dynamic neural network hysteresis model for piezoceramic actuators , 2005 .

[5]  Bijan Shirinzadeh,et al.  The measurement uncertainties in the laser interferometry-based sensing and tracking technique , 2002 .

[6]  K. Spanner,et al.  Advances in piezo-nanopositioning technology , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[7]  Yonghong Tan,et al.  Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator , 2006 .

[8]  Bijan Shirinzadeh Laser‐interferometry‐based tracking for dynamic measurements , 1998 .

[9]  Stefano Stramigioli,et al.  Contact impedance estimation for robotic systems , 2005, IEEE Trans. Robotics.

[10]  Bijan Shirinzadeh,et al.  Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation , 2008 .

[11]  Andrea Manuello Bertetto,et al.  A Two Degree of Freedom Gripper Actuated by SMA with Flexure Hinges , 2003, J. Field Robotics.

[12]  Sabri Cetinkunt,et al.  Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .

[13]  Bijan Shirinzadeh,et al.  Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation , 2008 .

[14]  Bijan Shirinzadeh,et al.  Kinematics and stiffness analyses of a flexure-jointed planar micromanipulation system for a decoupled compliant motion , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[15]  Bijan Shirinzadeh,et al.  Optimum dynamic balancing of planar parallel manipulators based on sensitivity analysis , 2006 .

[16]  Ying-Shieh Kung,et al.  Precision Control of a Piezoceramic Actuator Using Neural Networks , 2004 .

[17]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[18]  Shuo-Hung Chang,et al.  An ultra-precision XY/spl Theta//sub Z/ piezo-micropositioner. II. Experiment and performance , 1999 .

[19]  Lin Wei,et al.  Design of a flexure-based gripper used in optical fiber handling , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[20]  Anders Robertsson,et al.  Sensor Fusion for Compliant Robot Motion Control , 2008, IEEE Transactions on Robotics.

[21]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[22]  Lining Sun,et al.  Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model , 2005 .

[23]  S. P. Chan,et al.  Generalized impedance control of robot for assembly tasks requiring compliant manipulation , 1996, IEEE Trans. Ind. Electron..

[24]  Bijan Shirinzadeh,et al.  A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing , 2005 .

[25]  Bijan Shirinzadeh,et al.  Enhanced sliding mode motion tracking control of piezoelectric actuators , 2007 .

[26]  T.-J. Yeh,et al.  Modeling and Identification of Hysteresis in Piezoelectric Actuators , 2006 .

[27]  Bijan Shirinzadeh,et al.  Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation , 2008, IEEE Transactions on Control Systems Technology.

[28]  Bijan Shirinzadeh,et al.  Feasibility study of robust neural network motion tracking control of piezoelectric actuation systems for micro/nano manipulation , 2007 .

[29]  I-Ming Chen,et al.  Stiffness modeling of flexure parallel mechanism , 2005 .

[30]  Bijan Shirinzadeh,et al.  Optimum synthesis of planar parallel manipulators based on kinematic isotropy and force balancing , 2004, Robotica.

[31]  S. P. Chan,et al.  Experimental Implementation of Impedance Based Control Schemes for Assembly Task , 2000, J. Intell. Robotic Syst..

[32]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[33]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[34]  P. Gao,et al.  A new piezodriven precision micropositioning stage utilizing flexure hinges , 1999 .

[35]  Y. Somov Modelling physical hysteresis and control of a fine piezo-drive , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[36]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[37]  Maolin Jin,et al.  Robust Compliant Motion Control of Robot With Nonlinear Friction Using Time-Delay Estimation , 2008, IEEE Transactions on Industrial Electronics.

[38]  Tien-Fu Lu,et al.  A three-DOF compliant micromotion stage with flexure hinges , 2004, Ind. Robot.

[39]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[40]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation: Part I—Theory , 1985 .

[41]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[42]  Faa-Jeng Lin,et al.  Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism , 2004 .

[43]  Michael Goldfarb,et al.  A flexure-based gripper for small-scale manipulation , 1999, Robotica.

[44]  Xuemei Sun,et al.  Analysis and control of monolithic piezoelectric nano-actuator , 2001, IEEE Trans. Control. Syst. Technol..

[45]  Chih-Lyang Hwang,et al.  Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control , 2005, IEEE Transactions on Control Systems Technology.

[46]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[47]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[48]  Danwei Wang,et al.  Unified formulation of variable structure control schemes for robot manipulators , 1994, IEEE Trans. Autom. Control..

[49]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[50]  B. Shirinzadeh,et al.  Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint , 2004 .

[51]  Kee S. Moon,et al.  Optimal design of a flexure hinge based XYφ wafer stage , 1997 .

[52]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[53]  J. Paros How to design flexure hinges , 1965 .

[54]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[55]  Bijan Shirinzadeh,et al.  Enhanced stiffness modeling, identification and characterization for robot manipulators , 2005, IEEE Transactions on Robotics.

[56]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[57]  Thomas B. Sheridan,et al.  Robust compliant motion for manipulators, part I: The fundamental concepts of compliant motion , 1986, IEEE J. Robotics Autom..

[58]  Il Hong Suh,et al.  Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges , 2002, IEEE Trans. Robotics Autom..

[59]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.