Neural Models of Bayesian Belief Propagation

[1]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[2]  Rajesh P. N. Rao,et al.  Bayesian inference and attentional modulation in the visual cortex , 2005, Neuroreport.

[3]  Rajesh P. N. Rao,et al.  Implementing belief propagation in neural circuits , 2005, Neurocomputing.

[4]  Peter Dayan,et al.  Probabilistic Computation in Spiking Populations , 2004, NIPS.

[5]  Peter Dayan,et al.  Inference, Attention, and Decision in a Bayesian Neural Architecture , 2004, NIPS.

[6]  Rajesh P. N. Rao Hierarchical Bayesian Inference in Networks of Spiking Neurons , 2004, NIPS.

[7]  Peter Dayan,et al.  Doubly Distributional Population Codes: Simultaneous Representation of Uncertainty and Multiplicity , 2003, Neural Computation.

[8]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Si Wu,et al.  Sequential Bayesian Decoding with a Population of Neurons , 2003, Neural Computation.

[10]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[11]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[12]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[13]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[14]  R. Carpenter,et al.  The influence of urgency on decision time , 2000, Nature Neuroscience.

[15]  S. Grossberg,et al.  Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex , 2000, Vision Research.

[16]  Wulfram Gerstner,et al.  Noise in Integrate-and-Fire Neurons: From Stochastic Input to Escape Rates , 2000, Neural Computation.

[17]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[18]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[19]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[20]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[21]  Peter Dayan,et al.  Distributional Population Codes and Multiple Motion Models , 1998, NIPS.

[22]  Jeffrey D. Schall,et al.  Neural Mechanisms of Selection and Control of Visually Guided Eye Movements , 1998 .

[23]  Peter E. Latham,et al.  Statistically Efficient Estimation Using Population Coding , 1998, Neural Computation.

[24]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[25]  Geoffrey E. Hinton,et al.  Generative models for discovering sparse distributed representations. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[27]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[28]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[29]  Terrence J. Sejnowski,et al.  Bayesian Unsupervised Learning of Higher Order Structure , 1996, NIPS.

[30]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[31]  C. H. Anderson,et al.  Unifying Perspectives on Neuronal Codes and Processing , 1996, ICANN.

[32]  R. H. S. Carpenter,et al.  Neural computation of log likelihood in control of saccadic eye movements , 1995, Nature.

[33]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[34]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[35]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[36]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[37]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[38]  S. Grossberg,et al.  Linking Attention to Learning, Expectation, Competition, and Consciousness , 2005 .

[39]  Rajesh P. N. Rao Bayesian Computation in Recurrent Neural Circuits , 2004, Neural Computation.

[40]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[41]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[42]  Wulfram Gerstner,et al.  Population Dynamics of Spiking Neurons: Fast Transients, Asynchronous States, and Locking , 2000, Neural Computation.

[43]  R. Zemel,et al.  Statistical models and sensory attention , 1999 .

[44]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[45]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[46]  Eero P. Simoncelli Distributed representation and analysis of visual motion , 1993 .

[47]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .