Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences
暂无分享,去创建一个
Jean-Charles Faugère | Jérémy Berthomieu | Brice Boyer | J. Faugère | Jérémy Berthomieu | Brice Boyer
[1] Graham H. Norton,et al. On the Key Equation for n-Dimensional Cyclic Codes , 1993, Proceedings. IEEE International Symposium on Information Theory.
[2] N. Wiener. The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .
[3] Imre Z. Ruzsa,et al. Generalized arithmetical progressions and sumsets , 1994 .
[4] Shojiro Sakata,et al. The BMS Algorithm , 2009, Gröbner Bases, Coding, and Cryptography.
[5] Erich Kaltofen,et al. A fraction free Matrix Berlekamp/Massey algorithm , 2013 .
[6] Shojiro Sakata. Decoding binary 2-D cyclic codes by the 2-D Berlekamp-Massey algorithm , 1991, IEEE Trans. Inf. Theory.
[7] Claude-Pierre Jeannerod,et al. Solving toeplitz- and vandermonde-like linear systems with large displacement rank , 2007, ISSAC '07.
[8] Shojiro Sakata,et al. Extension of the Berlekamp-Massey Algorithm to N Dimensions , 1990, Inf. Comput..
[9] Chenqi Mou,et al. Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices , 2011, ISSAC '11.
[10] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .
[11] Patrizia M. Gianni,et al. Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.
[12] Chingwo Ma,et al. A simple Hankel interpretation of the Berlekamp-Massey algorithm , 1989 .
[13] SaintsK.,et al. Algebraic-geometric codes and multidimensional cyclic codes , 2006 .
[14] Elwyn R. Berlekamp. Nonbinary BCH decoding (Abstr.) , 1968, IEEE Trans. Inf. Theory.
[15] Victor Y. Pan,et al. Processor efficient parallel solution of linear systems over an abstract field , 1991, SPAA '91.
[16] Chris Heegard,et al. Cyclic Codes: A Unified Theory and Algorithms for Decoding Using Grobner Bases , 1995 .
[17] Norbert Wiener,et al. Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .
[18] Erich Kaltofen,et al. On the matrix berlekamp-massey algorithm , 2013, TALG.
[19] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[20] Christoph Koutschan,et al. Creative Telescoping for Holonomic Functions , 2013, ArXiv.
[21] Y. N. Lakshman,et al. On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.
[22] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[23] Shojiro Sakata,et al. Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array , 1988, J. Symb. Comput..
[24] Éric Schost,et al. On the complexity of computing with zero-dimensional triangular sets , 2011, J. Symb. Comput..