Multivariate Dynamic Sneak-Out Inequalities on Time Scales

In this study, we extend some “sneak-out” inequalities on time scales for a function depending on more than one parameter. The results are proved by using the induction principle and time scale version of Minkowski inequalities. In seeking applications, these inequalities are discussed in classical, discrete, and quantum calculus.

[1]  J. Pečarić,et al.  Hardy-Type Inequalities on Time Scale via Convexity in Several Variables , 2013 .

[2]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[3]  Mehmet Zeki Sarikaya,et al.  New weighted Ostrowski and Cebysev type inequalities on time scales , 2010, Comput. Math. Appl..

[4]  M. Noor,et al.  Certain novel estimates within fractional calculus theory on time scales , 2020 .

[5]  Mehmet Zeki Sarikaya On weighted Iyengar type inequalities on time scales , 2009, Appl. Math. Lett..

[6]  Umut Mutlu Özkan,et al.  Extensions of certain integral inequalities on time scales , 2008, Appl. Math. Lett..

[7]  K. Khan,et al.  Hardy-Copson Type Inequalities on Time Scales for the Functions of “n” Independent Variables , 2019, International Journal of Analysis and Applications.

[8]  S. Rashid,et al.  On some new double dynamic inequalities associated with Leibniz integral rule on time scales , 2021 .

[9]  J. Pečarić,et al.  SOME DYNAMIC HARDY-TYPE INEQUALITIES WITH GENERAL KERNEL , 2014 .

[10]  Muhammad Aslam Noor,et al.  Hermite-Hadamard Type Inequalities for the Class of Convex Functions on Time Scale , 2019, Mathematics.

[11]  S. Saker,et al.  Sneak-out principle on time scales , 2016 .

[12]  Humaira Kalsoom,et al.  Delay dynamic double integral inequalities on time scales with applications , 2020 .

[13]  G. Bennett,et al.  On Series of Positive Terms , 2004 .

[14]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .