Measuring parameters of massive black hole binaries with partially aligned spins
暂无分享,去创建一个
[1] W. Marsden. I and J , 2012 .
[2] J. Key,et al. Characterizing spinning black hole binaries in eccentric orbits with LISA , 2010, 1006.3759.
[3] A. Sesana. SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS , 2010, 1006.0730.
[4] A. Loeb,et al. Prompt Tidal Disruption of Stars as an Electromagnetic Signature of Supermassive Black Hole Coalescence , 2010, 1004.4833.
[5] S. McWilliams,et al. Impact of mergers on LISA parameter estimation for nonspinning black hole binaries , 2009, 0911.1078.
[6] A. Perego,et al. Dual black holes in merger remnants – II. Spin evolution and gravitational recoil , 2009, 0910.5729.
[7] M. Sereno,et al. Parameter estimation for coalescing massive binary black holes with LISA using the full 2-post-Newtonian gravitational waveform and spin-orbit precession , 2009, 0907.3318.
[8] REACTION OF ACCRETION DISKS TO ABRUPT MASS LOSS DURING BINARY BLACK HOLE MERGER , 2008, 0812.4874.
[9] R. Lang,et al. Advanced localization of massive black hole coalescences with LISA , 2008, 0810.5125.
[10] P. Armitage,et al. Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.
[11] E. Porter,et al. Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA , 2008, 0804.0332.
[12] A. Petiteau,et al. LISACode: A scientific simulator of LISA , 2008, 0802.2023.
[13] A. Sintes,et al. LISA observations of supermassive black holes: Parameter estimation using full post-Newtonian inspiral waveforms , 2007, 0707.4434.
[14] R. Lang,et al. Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.
[15] Michael Boyle,et al. High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.
[16] C. Broeck,et al. Higher signal harmonics, LISA's angular resolution, and dark energy , 2007, 0707.3920.
[17] R. Lang,et al. Erratum: Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession [Phys. Rev. D 74, 122001 (2006)] , 2007 .
[18] B. Iyer,et al. Higher harmonics increase LISA’s mass reach for supermassive black holes , 2007, 0704.1086.
[19] Alberto Sesana,et al. The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.
[20] S. McWilliams,et al. Binary black hole late inspiral: Simulations for gravitational wave observations , 2006, gr-qc/0612117.
[21] J. C. Cornish. Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.
[22] E. Porter,et al. Catching supermassive black hole binaries without a net , 2006, gr-qc/0605135.
[23] R. Lang,et al. Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.
[24] E. Porter,et al. MCMC exploration of supermassive black hole binary inspirals , 2006, gr-qc/0605085.
[25] C. Will,et al. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.
[26] P. Armitage,et al. Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich Mergers , 2005, astro-ph/0508493.
[27] N. Cornish,et al. LISA data analysis using Markov chain Monte Carlo methods , 2005 .
[28] Daniel E. Holz,et al. Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.
[29] A. Buonanno,et al. Estimating spinning binary parameters and testing alternative theories of gravity with LISA , 2004, gr-qc/0411129.
[30] E. Phinney,et al. The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.
[31] M. Vallisneri. Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.
[32] L. Rubbo,et al. Forward modeling of space borne gravitational wave detectors , 2003, gr-qc/0311069.
[33] A. Vecchio. LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.
[34] A. Buonanno,et al. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2002, gr-qc/0211087.
[35] J. Anthony Tyson,et al. Survey and Other Telescope Technologies and Discoveries , 2002 .
[36] P. Armitage,et al. Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.
[37] S. Hughes. Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.
[38] N. Christensen,et al. Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data , 2001, gr-qc/0102018.
[39] J. Armstrong,et al. Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .
[40] C. Cutler. Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.
[41] Sultan Kermally. From the conference series , 1995 .
[42] Kidder,et al. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.
[43] Thorne,et al. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.
[44] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[45] Finn,et al. Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.
[46] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .