Incidence, molecular characteristics, and imaging features of “clinically-defined pseudoprogression” in newly diagnosed glioblastoma treated with chemoradiation

[1]  Ajit S. Divakaruni,et al.  “Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging , 2021, NeuroImage: Clinical.

[2]  H. Uetani,et al.  Preferential tumor localization in relation to 18F-FDOPA uptake for lower‐grade gliomas , 2021, Journal of Neuro-Oncology.

[3]  V. Puduvalli,et al.  Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: a systematic review and meta-analysis , 2020, Neuro-oncology advances.

[4]  M. Nagane,et al.  Survival in patients with glioblastoma at a first progression does not correlate with isocitrate dehydrogenase (IDH)1 gene mutation status , 2020, Japanese journal of clinical oncology.

[5]  S. Aoki,et al.  Variability and Standardization of Quantitative Imaging , 2020, Investigative radiology.

[6]  Martin Bendszus,et al.  Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma , 2019, Cancers.

[7]  S. Choi,et al.  Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients , 2018, Neuro-oncology.

[8]  Marion Smits,et al.  Pseudoprogression of brain tumors , 2018, Journal of magnetic resonance imaging : JMRI.

[9]  T. Huber,et al.  Retrospective Analysis of Radiological Recurrence Patterns in Glioblastoma, Their Prognostic Value And Association to Postoperative Infarct Volume , 2018, Scientific Reports.

[10]  E. Dezamis,et al.  Prognostic factors for survival in adult patients with recurrent glioblastoma: a decision-tree-based model , 2018, Journal of Neuro-Oncology.

[11]  P. Lambin,et al.  Radiomics: the bridge between medical imaging and personalized medicine , 2017, Nature Reviews Clinical Oncology.

[12]  C. Caeiro,et al.  Current Standards of Care in Glioblastoma Therapy , 2017 .

[13]  J. Boxerman,et al.  Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape , 2017, Journal of Neuro-Oncology.

[14]  P. V. van Laar,et al.  Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: a Systematic Review and Meta-Analysis , 2017, Clinical Neuroradiology.

[15]  P. Wen,et al.  Baseline pretreatment contrast enhancing tumor volume including central necrosis is a prognostic factor in recurrent glioblastoma: evidence from single and multicenter trials , 2017, Neuro-oncology.

[16]  Steffen Löck,et al.  Image biomarker standardisation initiative , 2016 .

[17]  M. Davis Glioblastoma: Overview of Disease and Treatment. , 2016, Clinical journal of oncology nursing.

[18]  R. Bourgon,et al.  Patients With Proneural Glioblastoma May Derive Overall Survival Benefit From the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  Benjamin M Ellingson,et al.  Pros and cons of current brain tumor imaging. , 2014, Neuro-oncology.

[20]  Benjamin M Ellingson,et al.  Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. , 2014, Radiology.

[21]  K. Hoang-Xuan,et al.  Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[22]  T. Tominaga,et al.  The Association of Subventricular Zone Involvement at Recurrence with Survival after Repeat Surgery in Patients with Recurrent Glioblastoma , 2013, Neurologia medico-chirurgica.

[23]  Tae Min Kim,et al.  Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. , 2013, Radiology.

[24]  Robert J. Harris,et al.  Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: A radiographic study in 358 de novo human glioblastomas , 2012, NeuroImage.

[25]  A G Sorensen,et al.  Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma , 2011, American Journal of Neuroradiology.

[26]  W. Shi,et al.  Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma , 2011, Neurology.

[27]  P. Black,et al.  Scale to predict survival after surgery for recurrent glioblastoma multiforme. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Jianhui Zhong,et al.  Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. , 2010, Radiology.

[29]  A. Sahgal,et al.  Pseudoprogression Following Chemoradiotherapy for Glioblastoma Multiforme , 2010, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[30]  P. Box Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma , 2010 .

[31]  J. Fike,et al.  CNS complications of radiotherapy and chemotherapy , 2009, The Lancet.

[32]  Bart Neyns,et al.  Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations. , 2009, Surgical neurology.

[33]  P. Wen,et al.  Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression , 2009, Journal of Neuro-Oncology.

[34]  Dieta Brandsma,et al.  Incidence of early pseudo‐progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide , 2008, Cancer.

[35]  S. Karimi,et al.  Pseudoprogression (PsPr) after concurrent radiotherapy (RT) and temozolomide (TMZ) for newly diagnosed glioblastoma multiforme (GBM) , 2008 .

[36]  Dieta Brandsma,et al.  Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. , 2008, The Lancet. Oncology.

[37]  A. Brandes,et al.  MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  N. Burnet,et al.  Interpretation of Early Imaging after Concurrent Radiotherapy and Temozolomide for Glioblastoma , 2007 .

[39]  M. J. van den Bent,et al.  Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression , 2004, Neurology.

[40]  W. J. Oakes,et al.  Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma. , 1991, Medical and pediatric oncology.

[41]  H. Hirschberg,et al.  Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations. , 1990, Acta oncologica.

[42]  M. Langer,et al.  [Reversible computed tomographic changes following brain tumor irradiation induced by the "early-delayed reaction" after radiation]. , 1986, Der Radiologe.