Fabrication and characterization of Sn@Viod@Ceramic phase change macrocapsules for medium-temperature thermal storage

[1]  Luisa F. Cabeza,et al.  Advances in thermal energy storage for renewable energies integration in the energy system , 2021 .

[2]  Yinshuang Wang,et al.  Synthesis and characterization of a novel high durability alloy microcapsule for thermal energy storage , 2021 .

[3]  Changying Zhao,et al.  Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review , 2020 .

[4]  R. Mondragón,et al.  Improved thermal energy storage of nanoencapsulated phase change materials by atomic layer deposition , 2020 .

[5]  M. Rosen,et al.  A review of energy storage types, applications and recent developments , 2020 .

[6]  R. Saini,et al.  Review on solar thermal energy storage technologies and their geometrical configurations , 2020, International Journal of Energy Research.

[7]  Zhizhu He,et al.  Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management , 2019, Applied Energy.

[8]  Liwu Fan,et al.  Rheological behaviors of sugar alcohols for low-to-medium temperature latent heat storage: Effects of temperature in both the molten and supercooled liquid states , 2019, Solar Energy Materials and Solar Cells.

[9]  Bo Zhang,et al.  Quantification of global waste heat and its environmental effects , 2019, Applied Energy.

[10]  H. Ali,et al.  Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review , 2018, International Journal of Heat and Mass Transfer.

[11]  Cheng Zhou,et al.  Medium‐ and high‐temperature latent heat thermal energy storage: Material database, system review, and corrosivity assessment , 2018, International Journal of Energy Research.

[12]  P. Eames,et al.  Thermal energy storage for low and medium temperature applications using phase change materials – A review , 2016 .

[13]  Peng Zhang,et al.  Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system , 2016 .

[14]  T. Akiyama,et al.  Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage , 2016 .

[15]  J. Darkwa,et al.  Review of solid–liquid phase change materials and their encapsulation technologies , 2015 .

[16]  Yi-min Li,et al.  Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement , 2015 .

[17]  Robert Y. Wang,et al.  Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage. , 2015, ACS nano.

[18]  Xiaoguang Ma,et al.  Encapsulation of copper-based phase change materials for high temperature thermal energy storage , 2014 .

[19]  S. Khare,et al.  Selection of materials for high temperature latent heat energy storage , 2012 .

[20]  Bin Yang,et al.  Size-dependent undercooling of pure Sn by single particle DSC measurements , 2010 .

[21]  Julian M. Allwood,et al.  Theoretical efficiency limits for energy conversion devices , 2010 .

[22]  T. Akiyama,et al.  Thermal Stress Analysis of PCM Encapsulation for Heat Recovery of High Temperature Waste Heat , 2003 .