Retrieval of aerosol microphysical and optical properties over land using a multimode approach

Abstract. Polarimeter retrievals can provide detailed and accurate information on aerosol microphysical and optical properties. The SRON aerosol algorithm is one of the few retrieval approaches that can fully exploit this information. The algorithm core is a two-mode retrieval in which effective radius (reff), effective variance (veff), refractive index, and column number are retrieved for each mode; the fraction of spheres for the coarse mode and an aerosol layer height are also retrieved. Further, land and ocean properties are retrieved simultaneously with the aerosol properties. In this contribution, we extend the SRON aerosol algorithm by implementing a multimode approach in which each mode has fixed reff and veff. In this way the algorithm obtains more flexibility in describing the aerosol size distribution and avoids the high nonlinear dependence of the forward model on the aerosol size parameters. Conversely, the approach depends on the choice of the modes. We compare the performances of multimode retrievals (varying the number of modes from 2 to 10) with those based on the original (parametric) two-mode approach. Experiments with both synthetic measurements and real measurements (PARASOL satellite level-1 data of intensity and polarization) are conducted. The synthetic data experiments show that multimode retrievals are good alternatives to the parametric two-mode approach. It is found that for multimode approaches, with five modes the retrieval results can already be good for most parameters. The real data experiments (validated with AERONET data) show that, for the aerosol optical thickness (AOT), multimode approaches achieve higher accuracy than the parametric two-mode approach. For single scattering albedo (SSA), both approaches have similar performances.

[1]  Larry D. Travis,et al.  Satellite retrieval of aerosol properties over the ocean using measurements of reflected sunlight: Effect of instrumental errors and aerosol absorption , 1997 .

[2]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[3]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[4]  Pavel Litvinov,et al.  Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements , 2011 .

[5]  A. Kokhanovsky,et al.  Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades , 2009 .

[6]  Pavel Litvinov,et al.  Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements , 2011 .

[7]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[8]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[9]  Otto Hasekamp,et al.  Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination , 2014 .

[10]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[11]  Gabriele Curci,et al.  Aerosol single‐scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates , 2015 .

[12]  M. Mishchenko,et al.  Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter , 2001 .

[13]  M. Lebsock,et al.  Information content of near‐infrared spaceborne multiangular polarization measurements for aerosol retrievals , 2007 .

[14]  S. C. Hill,et al.  Light scattering by size/shape distributions of soil particles and spheroids. , 1984, Applied optics.

[15]  Olivier Hagolle,et al.  PARASOL in-flight calibration and performance. , 2007, Applied optics.

[16]  Brian Cairns,et al.  Passive remote sensing of aerosol layer height using near‐UV multiangle polarization measurements , 2016, Geophysical research letters.

[17]  Olga V. Kalashnikova,et al.  Coupled retrieval of aerosol properties and land surface reflection using the Airborne Multiangle SpectroPolarimetric Imager , 2017 .

[18]  Didier Tanré,et al.  Estimate of the aerosol properties over the ocean with POLDER , 2000 .

[19]  Thomas Trautmann,et al.  A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach , 2001 .

[20]  Otto P. Hasekamp,et al.  Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[21]  Otto P. Hasekamp,et al.  Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties , 2010 .

[22]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[23]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[24]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[25]  Otto P. Hasekamp,et al.  Retrieval of aerosol properties over the ocean from multispectral single‐viewing‐angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study , 2005 .

[26]  Li Liu,et al.  Scattering and Radiative Properties of Morphologically Complex Carbonaceous Aerosols: A Systematic Modeling Study , 2018, Remote. Sens..

[27]  K Stamnes,et al.  Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products. , 2018, Applied optics.

[28]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[29]  Brian Cairns,et al.  Aerosol retrieval from multiangle, multispectral photopolarimetric measurements: importance of spectral range and angular resolution , 2015, Atmospheric Measurement Techniques.

[30]  Xingfa Gu,et al.  Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements , 2011 .

[31]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[32]  O. P. Hasekamp,et al.  A linearized vector radiative transfer model for atmospheric trace gas retrieval , 2002 .

[33]  Alexander A. Kokhanovsky,et al.  The modern aerosol retrieval algorithms based on the simultaneous measurements of the intensity and polarization of reflected solar light: a review , 2015, Front. Environ. Sci..

[34]  Michael J. Garay,et al.  Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA , 2018, Journal of Applied Remote Sensing.

[35]  Yoshiyuki Kawata,et al.  Retrieval of aerosol optical properties over the ocean using multispectral polarization measurements from space , 2000, Appl. Math. Comput..

[36]  Otto P. Hasekamp,et al.  Direct radiative effect of aerosols based on PARASOL and OMI satellite observations , 2017 .

[37]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[38]  M. Mishchenko,et al.  Reply to Comment on “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the research scanning polarimeter” , 2001 .

[39]  Beat Schmid,et al.  Polarimetric remote sensing of aerosols over land , 2009 .

[40]  Global detection of absorbing aerosols over the ocean in the red and near‐infrared spectral region , 2016 .

[41]  Antonio Di Noia,et al.  Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter , 2017 .

[42]  F. Bréon,et al.  Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements , 1997 .

[43]  O. Hasekamp,et al.  Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation , 2016 .

[44]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[45]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[46]  Fabienne Maignan,et al.  Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling , 2009 .

[47]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .