Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae)

[1]  Ming-Hua Yang,et al.  Estimation of total flavonoid content in propolis by two complementary colometric methods , 2020, Journal of Food and Drug Analysis.

[2]  R. Ruan,et al.  Biorefinery process for production of bioactive compounds and bio-oil from Camellia oleifera shell , 2019, International Journal of Agricultural and Biological Engineering.

[3]  Q. Gao,et al.  Anticancer activity and mechanism of total saponins from the residual seed cake of Camellia oleifera Abel. in hepatoma-22 tumor-bearing mice. , 2019, Food & function.

[4]  M. Chung,et al.  Subcritical water extraction of phytochemicals from Phlomis umbrosa Turcz , 2017 .

[5]  Seung Mi Kim,et al.  In vitro Comparision of Biological Activities of Solvent Fraction Extracts from Orostachys japonicus , 2017 .

[6]  M. Chung,et al.  Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel , 2016 .

[7]  M. Chung,et al.  Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L. , 2015, Food chemistry.

[8]  Hye-Jin Park,et al.  Aqueous extract of Orostachys japonicus A. Berger exerts immunostimulatory activity in RAW 264.7 macrophages. , 2015, Journal of ethnopharmacology.

[9]  P. Chang,et al.  Extraction characteristics of subcritical water depending on the number of hydroxyl group in flavonols. , 2015, Food Chemistry.

[10]  D. Kitts,et al.  Antioxidant Property of Coffee Components: Assessment of Methods that Define Mechanisms of Action , 2014, Molecules.

[11]  Tao Xia,et al.  Qualitative and Quantitative Analysis of Triterpene Saponins from Tea Seed Pomace (Camellia oleifera Abel) and Their Activities against Bacteria and Fungi , 2014, Molecules.

[12]  Roseane Maria Ribeiro Costa,et al.  Characterization of Pentaclethra macroloba oil , 2014, Journal of Thermal Analysis and Calorimetry.

[13]  M. Chung,et al.  Relationship analysis between flavonoids structure and subcritical water extraction (SWE). , 2014, Food chemistry.

[14]  Neil R. Foster,et al.  A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds , 2011 .

[15]  D. Prasad,et al.  Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. , 2011, Food chemistry.

[16]  W. Lee,et al.  Characterisation of flavonoids in Orostachys japonicus A. Berger using HPLC–MS/MS: Contribution to the overall antioxidant effect , 2011 .

[17]  C. Cheigh,et al.  Subcritical water extraction of flavonol quercetin from onion skin , 2011 .

[18]  Choy Sin Hew,et al.  Pressurized hot water extraction (PHWE). , 2010, Journal of chromatography. A.

[19]  G. Mazza,et al.  Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water , 2007 .

[20]  Dae-Ok Kim,et al.  Evaluation of Different Methods of Antioxidant Measurement , 2007 .

[21]  M. Moyá,et al.  Radical scavenging ability of polyphenolic compounds towards DPPH free radical. , 2007, Talanta.

[22]  R. Toledo,et al.  Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. , 2004, Journal of agricultural and food chemistry.

[23]  M. Riekkola,et al.  Stability of polycyclic aromatic hydrocarbons in pressurised hot water. , 2003, The Analyst.

[24]  Roger M. Smith,et al.  Extractions with superheated water. , 2002, Journal of chromatography. A.

[25]  Kelly E Heim,et al.  Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. , 2002, The Journal of nutritional biochemistry.

[26]  Dejian Huang,et al.  Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. , 2002, Journal of agricultural and food chemistry.

[27]  M. D. Luque de Castro,et al.  Continuous subcritical water extraction as a useful tool for isolation of edible essential oils , 2001 .

[28]  E. Lissi,et al.  Reactions of the radical cation derived from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) with amino acids. Kinetics and mechanism , 2000 .

[29]  P. Pietta,et al.  Flavonoids as antioxidants. , 2000, Journal of natural products.

[30]  C. Berset,et al.  Kinetics and Mechanisms of Antioxidant Activity using the DPPH.Free Radical Method , 1997 .

[31]  C. Rice-Evans,et al.  Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. , 1997, Free radical research.

[32]  J J Strain,et al.  The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. , 1996, Analytical biochemistry.

[33]  W. A. Sexton,et al.  STRUCTURE—ACTIVITY RELATIONSHIPS , 1958, The Journal of pharmacy and pharmacology.

[34]  Dong-Seok Lee,et al.  Orostachys japonicus ethyl acetate fraction suppresses MRSA biofilm formation , 2020 .

[35]  J. Park,et al.  Phenolic Compounds from Orostachys japonicus having Anti - HIV-1 Protease Activity , 2000 .

[36]  R. Prior,et al.  Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. , 1997, Free radical biology & medicine.

[37]  C. Rice-Evans,et al.  Structure-antioxidant activity relationships of flavonoids and phenolic acids. , 1996, Free radical biology & medicine.

[38]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.