Biological Effects of C‐peptide and Proinsulin

C-peptide: In contrast to the earlier view, new data now indicate that proinsulin C-peptide does exert important physiological effects and shows the characteristics of an endogenous peptide hormone. C-peptide in nanomolar concentrations binds specifically to cell membranes, probably to a G-protein coupled receptor, resulting in subsequent activation of Ca2+- and MAP-kinase-dependent signaling pathways. C-peptide's binding to cell membranes is stereospecific and the C-terminal pentapeptide segment participates in the process. Some studies indicate that C-peptide and insulin may exert a synergistic effect on the insulin signaling pathway. C-peptide stimulates Na+,K+-ATPase and endothelial nitric oxide synthase activities. C-peptide administration in replacement doses in animal models of diabetes or in type 1 diabetic patients results in increased blood flow in skeletal muscle, myocardium, kidney, nerve, and skin. C-peptide replacement decreases glomerular hyperfiltration, reduces urinary albumin excretion, and corrects glomerular expansion. It also increases nerve conduction velocity, improves sensory nerve function, and reduces or reverses the characteristic diabetes-induced nodal and paranodal nerve structural changes. The evidence suggests that replacement of C-peptide together with insulin may be beneficial in patients with type 1 diabetes and serve to retard or prevent the development of long-term complications.Proinsulin: Only a very small proportion of proinsulin is released in its intact form to the circulation in healthy subjects. In contrast, in type 2 diabetes, plasma proinsulin and its conversion intermediates may be higher than in healthy individuals. Proinsulin binds to the insulin receptor with approximately 10% of insulin's affinity. The suggestion of a specific effect of proinsulin in lowering hepatic glucose output has not been verified in direct studies. Clinical trials designed to evaluate the usefulness of proinsulin as an insulin analogue in type 2 diabetic patients were discontinued because of increased incidence of myocardial infarction. Recent reports of specific high affinity proinsulin receptors in several tissues are intriguing and warrant further investigation. Keywords: G-protein; intracellular Ca2+; Na+, K+-ATPase; endothelial NO synthase; nephropathy; neuropathy; glomerular filtration; nerve conduction velocity

[1]  T. Brismar,et al.  Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. , 2003, Diabetes.

[2]  D. Chabardès,et al.  C-Peptide stimulates Na+,K+-ATPase activity via PKC alpha in rat medullary thick ascending limb , 2003, Diabetologia.

[3]  J. Wahren,et al.  C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. , 2002, Diabetes.

[4]  N. Sakane,et al.  Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. , 2002, The Biochemical journal.

[5]  J. Johansson,et al.  Molecular effects of proinsulin C-peptide. , 2002, Biochemical and biophysical research communications.

[6]  J. Johansson,et al.  Proinsulin C-peptide and its analogues induce intracellular Ca2+ increases in human renal tubular cells , 2002, Cellular and Molecular Life Sciences CMLS.

[7]  L. Heinemann,et al.  Effect of C-peptide on glucose metabolism in patients with type 1 diabetes. , 2002, Diabetes care.

[8]  C. Berne,et al.  Proinsulin Is an Independent Predictor of Coronary Heart Disease: Report From a 27-Year Follow-Up Study , 2002, Circulation.

[9]  A. Hsueh,et al.  Activation of Orphan Receptors by the Hormone Relaxin , 2002, Science.

[10]  S. Jacobson,et al.  Effects of C-peptide on glomerular and renal size and renal function in diabetic rats. , 2001, Kidney international.

[11]  G. Grunberger,et al.  Molecular basis for the insulinomimetic effects of C-peptide , 2001, Diabetologia.

[12]  C. Bode,et al.  Stimulation in vivo of expression of intra-abdominal adipose tissue plasminogen activator inhibitor Type I by proinsulin , 2001, Diabetologia.

[13]  M. Eriksson,et al.  Effects of C-peptide on forearm blood flow and brachial artery dilatation in patients with type 1 diabetes mellitus. , 2001, Acta physiologica Scandinavica.

[14]  G. Grunberger,et al.  C-peptide prevents and improves chronic Type I diabetic polyneuropathy in the BB/Wor rat , 2001, Diabetologia.

[15]  J. Johansson,et al.  C-peptide binding to human cell membranes: importance of Glu27. , 2001, Biochemical and biophysical research communications.

[16]  N. Sakane,et al.  Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. , 2001, The Biochemical journal.

[17]  G. Grunberger,et al.  C-peptide attenuates protein tyrosine phosphatase activity and enhances glycogen synthesis in L6 myoblasts. , 2001, Biochemical and biophysical research communications.

[18]  J. Johansson,et al.  Specific binding of proinsulin C-peptide to intact and to detergent-solubilized human skin fibroblasts. , 2001, Biochemical and biophysical research communications.

[19]  A. M. Lefer,et al.  C‐peptide inhibits leukocyte‐endothelium interaction in the microcirculation during acute endothelial dysfunction , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  A. M. Lefer,et al.  C-peptide exerts cardioprotective effects in myocardial ischemia-reperfusion. , 2000, American journal of physiology. Heart and circulatory physiology.

[21]  A. Saller,et al.  Structural involvement in type 1 and type 2 diabetic nephropathy. , 2000, Diabetes & metabolism.

[22]  D. Raccah,et al.  The effects ex vivo and in vitro of insulin and C-peptide on Na/K adenosine triphosphatase activity in red blood cell membranes of type 1 diabetic patients. , 2000, Metabolism: clinical and experimental.

[23]  J. Johansson,et al.  Role of C-peptide in human physiology. , 2000, American journal of physiology. Endocrinology and metabolism.

[24]  J. Wahren,et al.  Beneficial effects of C‐peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus , 2000, Diabetic medicine : a journal of the British Diabetic Association.

[25]  J. Wahren,et al.  Effects of proinsulin C-peptide on nitric oxide, microvascular blood flow and erythrocyte Na+,K+-ATPase activity in diabetes mellitus type I. , 2000, Clinical science.

[26]  J. Johansson,et al.  Unordered structure of proinsulin C-peptide in aqueous solution and in the presence of lipid vesicles , 2000, Cellular and Molecular Life Sciences CMLS.

[27]  L. Luzi,et al.  Higher post‐absorptive C‐peptide levels in Type 1 diabetic patients without renal complications , 1999, Diabetic medicine : a journal of the British Diabetic Association.

[28]  G Kratz,et al.  Specific binding of proinsulin C-peptide to human cell membranes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  G. Hallmans,et al.  High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population. , 1999, Metabolism: clinical and experimental.

[30]  P. K. Thomas,et al.  Diabetic neuropathy : mechanisms and future treatment options , 1999 .

[31]  Y. Oshida,et al.  Rat C peptide I and II stimulate glucose utilization in STZ-induced diabetic rats , 1999, Diabetologia.

[32]  K. Sugimoto,et al.  Experimental diabetic neuropathy: an update , 1999, Diabetologia.

[33]  E. Messina,et al.  C-peptide induces a concentration-dependent dilation of skeletal muscle arterioles only in presence of insulin. , 1999, American journal of physiology. Heart and circulatory physiology.

[34]  T. Forst,et al.  The effect of human proinsulin C-peptide on erythrocyte deformability in patients with Type I diabetes mellitus , 1999, Diabetologia.

[35]  P. Jehle,et al.  High affinity binding sites for proinsulin on human umbilical vein endothelial cells (HUVEC) , 1999, Diabetologia.

[36]  A. Hiura,et al.  Insulinoma with hyperproinsulinemia during hypoglycemia and loss of expression of vacuolar-type H+-ATPase (V-ATPase) in the tumor tissue , 1999, International journal of pancreatology : official journal of the International Association of Pancreatology.

[37]  O. Madsen,et al.  Functioning human insulinomas , 1998, Virchows Archiv.

[38]  P K Thomas,et al.  Diabetes mellitus and the nervous system , 1998, Journal of neurology, neurosurgery, and psychiatry.

[39]  M. Sjöquist,et al.  Effects of C-peptide on renal function at the early stage of experimental diabetes. , 1998, Kidney international.

[40]  D. Raccah,et al.  Erythrocyte Na/K ATPase activity and diabetes: relationship with C-peptide level , 1998, Diabetologia.

[41]  M. Cooper,et al.  Pathogenesis, prevention, and treatment of diabetic nephropathy , 1998, The Lancet.

[42]  L. Luzi Pancreas transplantation and diabetic complications. , 1998, The New England journal of medicine.

[43]  D. Sutherland,et al.  Reversal of lesions of diabetic nephropathy after pancreas transplantation. , 1998, The New England journal of medicine.

[44]  T. Forst,et al.  Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. , 1998, The Journal of clinical investigation.

[45]  H. Jörnvall,et al.  Differential effects of proinsulin C-peptide fragments on Na +, K +-ATPase activity of renal tubule segments , 1998, Diabetologia.

[46]  P. Halban,et al.  Release of Incompletely Processed Proinsulin Is the Cause of the Disproportionate Proinsulinemia of NIDDM , 1997, Diabetes.

[47]  X. Navarro,et al.  Long‐term effects of pancreatic transplantation on diabetic neuropathy , 1997, Annals of neurology.

[48]  W. Webb,et al.  Fluorescence correlation spectroscopy: diagnostics for sparse molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Oskarsson,et al.  Effects of C‐peptide on insulin‐induced hypoglycaemia and its counterregulatory responses in IDDM patients , 1997, Diabetic medicine : a journal of the British Diabetic Association.

[50]  E. Di Cera,et al.  Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. , 1997, Science.

[51]  D. Steiner,et al.  Proinsulin C-Peptide-Biological Activity? , 1997, Science.

[52]  M. Foppiano,et al.  Worldwide pharmacovigilance systems and tolrestat withdrawal , 1997, The Lancet.

[53]  T. Hohman,et al.  Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats , 1997, Diabetologia.

[54]  J. Wahren,et al.  C-peptide improves autonomic nerve function in IDDM patients , 1996, Diabetologia.

[55]  Y. Oshida,et al.  Effect of C-peptide administration on whole body glucose utilization in STZ-induced diabetic rats. , 1996, Acta physiologica Scandinavica.

[56]  H. Vlassara,et al.  Protein glycation in the kidney: role in diabetes and aging. , 1996, Kidney international.

[57]  P. Jehle,et al.  High affinity binding sites for proinsulin in human IM-9 lymphoblasts , 1996, Diabetologia.

[58]  J. Zierath,et al.  C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin receptor and tyrosine kinase activation , 1996, Diabetologia.

[59]  J. Wahren,et al.  C-peptide stimulates rat renal tubular Na+, K+-ATPase activity in synergism with neuropeptide Y , 1996, Diabetologia.

[60]  G. Jerums,et al.  Extracellular matrix and its interactions in the diabetic kidney: a molecular biological approach. , 1995, Journal of diabetes and its complications.

[61]  E. Feldman,et al.  The linked roles of nitric oxide, aldose reductase and, (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. , 1994, The Journal of clinical investigation.

[62]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Bourguignon,et al.  Gonadotropin releasing hormone inhibitory autofeedback by subproducts antagonist at N-methyl-D-aspartate receptors: a model of autocrine regulation of peptide secretion. , 1994, Endocrinology.

[64]  J. Wahren,et al.  Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of Type 1 (insulin-dependent) diabetic patients , 1992, Diabetologia.

[65]  M. Steffes,et al.  An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. , 1992, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[66]  B. Sobel,et al.  Stimulation by Proinsulin of Expression of Plasminogen Activator Inhibitor Type-I in Endothelial Cells , 1992, Diabetes.

[67]  D. Howey,et al.  Biosynthetic Human Proinsulin: Review of Chemistry, in Vitro and in Vivo Receptor Binding, Animal and Human Pharmacology Studies, and Clinical Trial Experience , 1992, Diabetes Care.

[68]  Jeppe Sturis,et al.  Estimation of Insulin Secretion Rates from C-Peptide Levels: Comparison of Individual and Standard Kinetic Parameters for C-Peptide Clearance , 1992, Diabetes.

[69]  J. Wahren,et al.  The influence of human C-peptide on renal function and glucose utilization in Type 1 (insulin-dependent) diabetic patients , 1992, Diabetologia.

[70]  J. Zierath,et al.  Effect of human C-peptide on glucose transport in in vitro incubated human skeletal muscle , 1991, Diabetologia.

[71]  J. Wahren,et al.  Renal and splanchnic exchange of human biosynthetic C-peptide in Type 1 (insulin-dependent) diabetes mellitus , 1991, Diabetologia.

[72]  P. Winocour,et al.  A Randomized Cross‐over Study of the Effects of Proinsulin on Lipid Metabolism in Type 2 Diabetes , 1991, Diabetic medicine : a journal of the British Diabetic Association.

[73]  I. Shalit,et al.  All‐D‐magainin: chirality, antimicrobial activity and proteolytic resistance , 1990, FEBS letters.

[74]  C. Mogensen Prediction of Clinical Diabetic Nephropathy in IDDM Patients: Alternatives to Microalbuminuria? , 1990, Diabetes.

[75]  C. Hales,et al.  RADIOIMMUNOASSAY MAY OVERESTIMATE INSULIN IN NON‐INSULIN‐DEPENDENT DIABETICS , 1990, Clinical endocrinology.

[76]  P. Bennett,et al.  Disproportionately elevated proinsulin in Pima Indians with noninsulin-dependent diabetes mellitus. , 1990, The Journal of clinical endocrinology and metabolism.

[77]  D. Owens,et al.  INSULIN DEFICIENCY IN NON-INSULIN-DEPENDENT DIABETES , 1989, The Lancet.

[78]  J. Patsch,et al.  Effects of biosynthetic human proinsulin on plasma lipids in type 2 diabetes mellitus , 1988, Klinische Wochenschrift.

[79]  P. Gruppuso,et al.  Binding of proinsulin and proinsulin conversion intermediates to human placental insulin-like growth factor I receptors. , 1988, The Journal of clinical endocrinology and metabolism.

[80]  R. Østerby,et al.  Glomerular Morphology by Light Microscopy in Non-Insulin-Dependent Diabetes Mellitus: Lack of Glomerular Hypertrophy , 1988, Diabetes.

[81]  J. Bülow,et al.  Kinetics of circulating endogenous insulin, C-peptide, and proinsulin in fasting nondiabetic man. , 1987, Metabolism: clinical and experimental.

[82]  A. Lefvert,et al.  Residual insulin production, glycaemic control and prevalence of microvascular lesions and polyneuropathy in long-term Type 1 (insulin-dependent) diabetes mellitus , 1987, Diabetologia.

[83]  E Ernst,et al.  Altered Red and White Blood Cell Rheology in Type II Diabetes , 1986, Diabetes.

[84]  P. Palatini,et al.  Reduction of erythrocyte (Na+-K+)ATPase activity in Type 1 (insulin-dependent) diabetic subjects and its activation by homologous plasma , 1986, Diabetologia.

[85]  K. Polonsky,et al.  Ingestion of a mixed meal does not affect the metabolic clearance rate of biosynthetic human C-peptide. , 1986, The Journal of clinical endocrinology and metabolism.

[86]  B. Brenner,et al.  Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. , 1986, The Journal of clinical investigation.

[87]  V. Towle,et al.  Clinical studies with an aldose reductase inhibitor in the autonomic and somatic neuropathies of diabetes. , 1986, Metabolism: clinical and experimental.

[88]  J. Olefsky,et al.  Kinetics of Biosynthetic Human Proinsulin Action in Isolated Rat Adipocytes , 1986, Diabetes.

[89]  S. Hampton,et al.  Specific binding of the C-peptide of proinsulin to cultured B-cells from a transplantable rat islet cell tumor , 1986, Bioscience reports.

[90]  B. Hoogwerf,et al.  Infusion of synthetic human C-peptide does not affect plasma glucose, serum insulin, or plasma glucagon in healthy subjects. , 1986, Metabolism: clinical and experimental.

[91]  A. Krolewski,et al.  The changing natural history of nephropathy in type I diabetes. , 1985, The American journal of medicine.

[92]  W. Duckworth,et al.  In Vitro Activity of Biosynthetic Human Proinsulin: Receptor Binding and Biologic Potency of Proinsulin and Insulin in Isolated Rat Adipocytes , 1984, Diabetes.

[93]  K. Polonsky,et al.  The Effects of Biosynthetic Human Proinsulin on Carbohydrate Metabolism , 1984, Diabetes.

[94]  K. Polonsky,et al.  C-Peptide as a Measure of the Secretion and Hepatic Extraction of Insulin: Pitfalls and Limitations , 1984, Diabetes.

[95]  W. Waldhäusl,et al.  Hepatic disposal of biosynthetic human insulin and porcine C-peptide in humans. , 1984, Metabolism: clinical and experimental.

[96]  J. Olefsky,et al.  In Vitro Characterization of Biosynthetic Human Proinsulin , 1984, Diabetes.

[97]  C. Ronco,et al.  Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. , 1983, The American journal of medicine.

[98]  G. Slama,et al.  Progressive centripetal degeneration of axons in small fibre diabetic polyneuropathy. , 1983, Brain : a journal of neurology.

[99]  E. Pfeiffer,et al.  Effects of synthetic rat C-peptide in normal and diabetic rats , 1983, Diabetologia.

[100]  K. Polonsky,et al.  Metabolism of C-peptide in the dog. In vivo demonstration of the absence of hepatic extraction. , 1983, The Journal of clinical investigation.

[101]  K. M. Erickson,et al.  Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. , 1980, The Journal of clinical endocrinology and metabolism.

[102]  J. M. May,et al.  Characterization of proinsulin-insulin intermediates in human plasma. , 1978, The Journal of clinical investigation.

[103]  D. McMillan,et al.  Reduced Erythrocyte Deformability in Diabetes , 1978, Diabetes.

[104]  D L Horwitz,et al.  Kinetics of human connecting peptide in normal and diabetic subjects. , 1978, The Journal of clinical investigation.

[105]  A. Moses,et al.  Proinsulin binds to a growth peptide receptor and stimulates DNA synthesis in chick embryo fibroblasts. , 1977, Endocrinology.

[106]  H. Kuzuya,et al.  Abnormalities in circulating beta cell peptides in chronic renal failure: comparison of C-peptide, proinsulin and insulin. , 1977, The Journal of clinical endocrinology and metabolism.

[107]  L. Heding Radioimmunological determination of human C-peptide in serum , 1975, Diabetologia.

[108]  P. Freychet The interactions of proinsulin with insulin receptors on the plasma membrane of the liver. , 1974, The Journal of clinical investigation.

[109]  S. Yu,et al.  Biological activity of proinsulin and related polypeptides in the fat tissue. , 1973, The Journal of biological chemistry.

[110]  A. Katz,et al.  Metabolism of proinsulin, insulin, and C-peptide in the rat. , 1973, The Journal of clinical investigation.

[111]  H. H. Sørensen,et al.  Assay of insulin-like activity by the isolated fat cell method IV. The biological activity of proinsulin , 1970, Diabetologia.

[112]  D. Steiner,et al.  Secretion of Proinsulin C-Peptide by Pancreatic β Cells and its Circulation in Blood , 1969, Nature.

[113]  D. Steiner,et al.  The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[114]  V. Vallon,et al.  Human C-peptide acutely lowers glomerular hyperfiltration and proteinuria in diabetic rats: a dose-response study , 2001, Naunyn-Schmiedeberg's Archives of Pharmacology.

[115]  C. Pierson,et al.  Human C-peptide Dose Dependently Prevents Early Neuropathy in the BB/Wor-rat , 2001, International journal of experimental diabetes research.

[116]  D. Steiner New Aspects of Proinsulin Physiology and Pathophysiology , 2000, Journal of pediatric endocrinology & metabolism : JPEM.

[117]  J. Pernow,et al.  C-peptide potentiates the vasoconstrictor effect of neuropeptide Y in insulin-dependent diabetic patients. , 1999, Acta physiologica Scandinavica.

[118]  B. Haraldsson,et al.  Acute effects of C-peptide on the microvasculature of isolated perfused skeletal muscles and kidneys in rat. , 1996, Acta physiologica Scandinavica.

[119]  L. Berglund,et al.  Residual C-peptide excretion is associated with a better long-term glycemic control and slower progress of retinopathy in type I (insulin-dependent) diabetes mellitus. , 1991, The Journal of diabetic complications.

[120]  K. Polonsky,et al.  Current approaches to measurement of insulin secretion. , 1986, Diabetes/metabolism reviews.

[121]  Bruce H. Frank,et al.  Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. , 1986, The Journal of clinical investigation.

[122]  L. O. Simpson,et al.  Intrinsic stiffening of red blood cells as the fundamental cause of diabetic nephropathy and microangiopathy: a new hypothesis. , 1985, Nephron.