Enrichissement d'un lexique de termes subjectifs à partir de tests sémantiques

Recent considerations in opinion mining, oriented by real applicative tasks, require creating lexical and semantic resources quantitatively and qualitatively rich. In this context, we present a method to automatically enhance a lexicon of subjective terms. The method relies on the indexing of Web documents by a search engine and large number of requests automatically sent. The construction of these requests, linguistically motivated, can infer the value of semantics and axiological aspect of a large number of adjectives, nouns and noun phrases, verbs and verbal phrases of French. We then evaluate the lexicon enhancement by testing the detection of local evaluation in a corpus of 5 000 blogs notes and comments.

[1]  Yves Bestgen Détermination de la valence affective de termes dans de grands corpus de textes , 2002 .

[2]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[3]  Philip J. Stone,et al.  Extracting Information. (Book Reviews: The General Inquirer. A Computer Approach to Content Analysis) , 1967 .

[4]  P. Charaudeau,et al.  Grammaire du sens et de l expression , 1992 .

[5]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[6]  Matthieu Vernier,et al.  Annotating Opinion - Evaluation Of Blogs , 2008 .

[7]  David A. Ferrucci,et al.  UIMA: an architectural approach to unstructured information processing in the corporate research environment , 2004, Natural Language Engineering.

[8]  Yvette Yannick Mathieu Annotation of Emotions and Feelings in Texts , 2005, ACII.

[9]  Jeannett Martin,et al.  The Language of Evaluation: Appraisal in English , 2005 .

[10]  J. Vergne,et al.  Regards Théoriques sur le "Tagging" , 1998 .

[11]  Louis Lavelle,et al.  Traité des valeurs , 1951 .

[12]  Swapna Somasundaran,et al.  Finding the Sources and Targets of Subjective Expressions , 2008, LREC.

[13]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[14]  É. Benveniste Problèmes de linguistique générale , 1968 .

[15]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[16]  Gilad Mishne,et al.  Predicting Movie Sales from Blogger Sentiment , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[17]  Rada Mihalcea,et al.  A Bootstrapping Method for Building Subjectivity Lexicons for Languages with Scarce Resources , 2008, LREC.

[18]  Jack G. Conrad,et al.  Opinion mining in legal blogs , 2007, ICAIL.

[19]  J. Anscombre,et al.  L'argumentation dans la langue , 1976 .

[20]  Peter D. Turney Thumbs Up, Thumbs Down , 2013, Journal of Cell Science.

[21]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[22]  Matthieu Vernier,et al.  Catégorisation des évaluations dans un corpus de blogs multi-domaine , 2009, Fouille de Données d'Opinions.

[23]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[24]  A. Feinstein,et al.  High agreement but low kappa: I. The problems of two paradoxes. , 1990, Journal of clinical epidemiology.

[25]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[26]  Matthieu Vernier,et al.  DEFT'09 : détection de la subjectivité et catégorisation de textes subjectifs par une approche mixte symbolique et statistique , 2009 .

[27]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[28]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[29]  Michael Gamon,et al.  Customizing Sentiment Classifiers to New Domains: a Case Study , 2019 .

[30]  Claire Cardie,et al.  Annotating Topics of Opinions , 2008, LREC.

[31]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[32]  C. Kerbrat-Orecchioni L'énonciation : de la subjectivité dans le langage , 1983 .