Approximating the Maxmin-angle Covering Triangulation

Abstract Given a planar straight-line graph or polygon with holes, we seek a covering triangulation whose minimum angle is as large as possible. A covering triangulation is a Steiner triangulation with the following restriction: no Steiner vertices may be added on an input edge. We give an explicit upper bound on the largest possible minimum angle in any covering triangulation of a given input. This upper bound depends on local geometric features of the input. We then show that our covering triangulation has minimum angle at least a constant factor times this upper bound. This is the first known algorithm for generating a covering triangulation of an arbitrary input with a provable bound on triangle shape. Covering triangulations can be used to triangulate intersecting regions independently, and so solve several subproblems of mesh generation.

[1]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[2]  David Eppstein,et al.  Edge insertion for optimal triangulations , 1993, Discret. Comput. Geom..

[3]  S. Mitchell Mesh generation with provable quality bounds , 1993 .

[4]  Scott A. Mitchell,et al.  Quality mesh generation in three dimensions , 1992, SCG '92.

[5]  Scott A. Mitchell Finding a Covering Triangulation Whose Maximum Angle is Provably Small , 1997, Int. J. Comput. Geom. Appl..

[6]  Jim Ruppert,et al.  A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.

[7]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[8]  Marshall W. Bern,et al.  Compatible tetrahedralizations , 1993, SCG '93.

[9]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[10]  Tiow Seng Tan,et al.  An O(n2log n) time algorithm for the MinMax angle triangulation , 1990, SCG '90.

[11]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[12]  John Rischard Rice,et al.  Mathematical Software , 1971 .

[13]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[14]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[15]  David Eppstein,et al.  Triangulating polygons without large angles , 1995, Int. J. Comput. Geom. Appl..

[16]  C. Lawson Software for C1 interpolation , 1977 .

[17]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[18]  L. Paul Chew,et al.  Guaranteed-Quality Triangular Meshes , 1989 .