Bias-Correction Errors-in-Variables Hammerstein Model Identification

In this paper, a bias-correction least-squares (LS) algorithm is proposed for identifying block- oriented errors-in-variables nonlinear Hammerstein (EIV- Hammerstein) systems. Because both the input and output of the EIV-Hammerstein system are observed with additive white noises, the estimation bias of traditional LS algorithm is introduced. The estimation bias is derived from a consistency point of view, which is a function about noise variances and monomial of noiseless system input–output measurements. A bias-estimation scheme based only on the available noisy measurements is then proposed for consistent identification of the monomial of noiseless system input–output measurements in a recursive form. In particular, a specific algorithm based on minimizing the output prediction error is given to find out the unknown noise variances for practical applications, such that the noise effect can be eliminated and the consistent estimated parameters are obtained. The effectiveness of the proposed method is demonstrated by a simulation example and an experimental prototype of wireless power transfer system.

[1]  Erik Weyer,et al.  Non-asymptotic Confidence Regions for the Transfer Functions of Errors-in-Variables Systems , 2022, IEEE Transactions on Automatic Control.

[2]  Fengwei Chen,et al.  Gray-Box Parsimonious Subspace Identification of Hammerstein-Type Systems , 2021, IEEE Transactions on Industrial Electronics.

[3]  Okyay Kaynak,et al.  Optimized Design of Parity Relation-Based Residual Generator for Fault Detection: Data-Driven Approaches , 2021, IEEE Transactions on Industrial Informatics.

[4]  Peter C. Young,et al.  Data-Driven Modeling of Wireless Power Transfer Systems With Slowly Time-Varying Parameters , 2020, IEEE Transactions on Power Electronics.

[5]  Peter C. Young,et al.  Data-Driven Modeling of Wireless Power Transfer Systems With Multiple Transmitters , 2020, IEEE Transactions on Power Electronics.

[6]  Ye Yuan,et al.  Data-Driven Discovery of Block-Oriented Nonlinear Models Using Sparse Null-Subspace Methods , 2020, IEEE Transactions on Cybernetics.

[7]  Fabrizio Dabbene,et al.  Identification of switched autoregressive exogenous systems from large noisy datasets , 2020, International journal of robust and nonlinear control.

[8]  Jianlong Qiu,et al.  A Novel EM Identification Method for Hammerstein Systems With Missing Output Data , 2020, IEEE Transactions on Industrial Informatics.

[9]  Feng Ding,et al.  Iterative Identification of Hammerstein Parameter Varying Systems With Parameter Uncertainties Based on the Variational Bayesian Approach , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[10]  Wei Xing Zheng,et al.  A graph subspace approach to system identification based on errors-in-variables system models , 2019, Autom..

[11]  Tao Liu,et al.  Subspace identification of Hammerstein-type nonlinear systems subject to unknown periodic disturbance , 2019, Int. J. Control.

[12]  Włodzimierz Greblicki,et al.  The Weighted Nearest Neighbor Estimate for Hammerstein System Identification , 2019, IEEE Transactions on Automatic Control.

[13]  Fengwei Chen,et al.  Fixed point iteration‐based subspace identification of Hammerstein state‐space models , 2019, IET Control Theory & Applications.

[14]  Long Chen,et al.  On Some Separated Algorithms for Separable Nonlinear Least Squares Problems , 2018, IEEE Transactions on Cybernetics.

[15]  Feng Ding,et al.  A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation , 2018, J. Frankl. Inst..

[16]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[17]  Vito Cerone,et al.  Set-membership errors-in-variables identification of MIMO linear systems , 2018, Autom..

[18]  Giulio Bottegal,et al.  A nonparametric kernel-based approach to Hammerstein system identification , 2017, Autom..

[19]  Wei Xing Zheng,et al.  Recursive Identification of Hammerstein Systems: Convergence Rate and Asymptotic Normality , 2017, IEEE Transactions on Automatic Control.

[20]  Jean-Philippe Noël,et al.  Nonlinear system identification in structural dynamics: 10 more years of progress , 2017 .

[21]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[22]  Feng Ding,et al.  Parameter estimation algorithms for multivariable Hammerstein CARMA systems , 2016, Inf. Sci..

[23]  Koen Tiels,et al.  Identification of block-oriented nonlinear systems starting from linear approximations: A survey , 2016, Autom..

[24]  Xavier Bombois,et al.  Errors-in-variables identification in dynamic networks - Consistency results for an instrumental variable approach , 2015, Autom..

[25]  Han-Fu Chen,et al.  Recursive Identification of Multi-Input Multi-Output Errors-in-Variables Hammerstein Systems , 2015, IEEE Transactions on Automatic Control.

[26]  A. Friedman,et al.  Dynamic Inductance in Saturated Cores Fault Current Limiters , 2015 .

[27]  Feng Ding,et al.  Highly Efficient Identification Methods for Dual-Rate Hammerstein Systems , 2015, IEEE Transactions on Control Systems Technology.

[28]  Roland Tóth,et al.  A bias-corrected estimator for nonlinear systems with output-error type model structures , 2014, Autom..

[29]  Torsten Söderström,et al.  Comparing some classes of bias-compensating least squares methods , 2013, Autom..

[30]  Feng Ding,et al.  Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data , 2011, IEEE Transactions on Automatic Control.

[31]  Ran Tao,et al.  A Unified Framework for Bias Compensation Based Methods in Correlated Noise Case , 2011, IEEE Transactions on Automatic Control.

[32]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[33]  Reza Iravani,et al.  On the Transformer Core Dynamic Behavior During Electromagnetic Transients , 2010, IEEE Transactions on Power Delivery.

[34]  Lennart Ljung,et al.  Revisiting Hammerstein system identification through the Two-Stage Algorithm for bilinear parameter estimation , 2009, Autom..

[35]  Johan A. K. Suykens,et al.  Subspace identification of Hammerstein systems using least squares support vector machines , 2005, IEEE Transactions on Automatic Control.

[36]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[37]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[38]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[39]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[40]  István Vajk,et al.  Identification of nonlinear errors-in-variables models , 2003, Autom..

[41]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[42]  S. Joe Qin,et al.  Consistent dynamic PCA based on errors-in-variables subspace identification , 2001 .

[43]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[44]  T. Söderström,et al.  Bias correction in least-squares identification , 1982 .

[45]  Lijie Sun,et al.  Recursive Parsimonious Subspace Identification for Closed-Loop Hammerstein Nonlinear Systems , 2019, IEEE Access.

[46]  Alberto Bemporad,et al.  A bias-correction method for closed-loop identification of Linear Parameter-Varying systems , 2018, Autom..

[47]  Fouad Giri,et al.  Persistent Excitation by Deterministic Signals for Subspace Parametric Identification of MISO Hammerstein Systems , 2016, IEEE Transactions on Automatic Control.

[48]  Rafael Alonso,et al.  Analysis of the Mutual Inductance of Planar-Lumped Inductive Power Transfer Systems , 2013, IEEE Transactions on Industrial Electronics.