Theoretical modelling and FE simulation on the oblique diamond turning of ZnS crystal

[1]  B. Lawn,et al.  Brittleness as an indentation size effect , 1976 .

[2]  A. Evans,et al.  A model for crack initiation in elastic/plastic indentation fields , 1977 .

[3]  Nakasuji Tomoaki,et al.  Diamond Turning of Brittle Materials for Optical Components , 1990 .

[4]  Ronald O. Scattergood,et al.  Ductile‐Regime Machining of Germanium and Silicon , 1990 .

[5]  Toshimichi Moriwaki,et al.  Ultraprecision Metal Cutting — The Past, the Present and the Future , 1991 .

[6]  R. Scattergood,et al.  Ductile-Regime Grinding: A New Technology for Machining Brittle Materials , 1991 .

[7]  Michael E. Thomas,et al.  Infrared optical materials , 1996, Optics + Photonics.

[8]  Naoya Ikawa,et al.  Crack Initiation in Machining Monocrystalline Silicon , 1999 .

[9]  Bi Zhang,et al.  Grinding Damage Prediction for Ceramics via CDM Model , 2000 .

[10]  Subra Suresh,et al.  Computational modeling of the forward and reverse problems in instrumented sharp indentation , 2001 .

[11]  R. Komanduri,et al.  On the ductile machining of silicon for micro electro-mechanical systems (MEMS), opto-electronic and optical applications , 2001 .

[12]  William J. Endres,et al.  AN ANALYSIS OF SURFACE CRACKING DURING ORTHOGONAL MACHINING OF GLASS , 2001 .

[13]  Fengzhou Fang,et al.  Diamond Turning of Soft Semiconductors to Obtain Nanometric Mirror Surfaces , 2002 .

[14]  Tsunemoto Kuriyagawa,et al.  Ductile regime turning at large tool feed , 2002 .

[15]  Fengzhou Fang,et al.  Modelling and experimental investigation on nanometric cutting of monocrystalline silicon , 2005 .

[16]  Junghwan Ahn,et al.  Effects of the friction coefficient on the minimum cutting thickness in micro cutting , 2005 .

[17]  Sangkee Min,et al.  Recent Advances in Mechanical Micromachining , 2006 .

[18]  Spandan Maiti,et al.  A New Analytical Model for Estimation of Scratch‐Induced Damage in Brittle Solids , 2007 .

[19]  M. B. Cai,et al.  Crack initiation in relation to the tool edge radius and cutting conditions in nanoscale cutting of silicon , 2007 .

[20]  Daniel C. Harris,et al.  Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows , 2007, SPIE Defense + Commercial Sensing.

[21]  J. Wang,et al.  Critical Depth of Cut and Specific Cutting Energy of a Microscribing Process for Hard and Brittle Materials , 2008 .

[22]  Daniel C. Harris,et al.  Thermal, structural, and optical properties of Cleartran ® multispectral zinc sulfide , 2008 .

[23]  Jiwang Yan,et al.  Mechanism for material removal in diamond turning of reaction-bonded silicon carbide , 2009 .

[24]  Steven Y. Liang,et al.  Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials , 2009 .

[25]  Mahmudur Rahman,et al.  The effect of tool edge radius on the chip formation behavior of tool-based micromachining , 2010 .

[26]  G. R. Johnson,et al.  A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures , 2011 .

[27]  A. Senthil Kumar,et al.  A review on the current research trends in ductile regime machining , 2012 .

[28]  Tao Sun,et al.  Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals , 2013 .

[29]  Mahmudur Rahman,et al.  A predictive model of the critical undeformed chip thickness for ductile–brittle transition in nano-machining of brittle materials , 2013 .

[30]  R. Reuben,et al.  Brittle-ductile transition during diamond turning of single crystal silicon carbide , 2013 .

[31]  Yuebin B. Guo,et al.  Unified Criterion for Brittle–Ductile Transition in Mechanical Microcutting of Brittle Materials , 2014 .

[32]  Tao Sun,et al.  Critical undeformed chip thickness of brittle materials in single point diamond turning , 2015 .

[33]  Adriano Fagali de Souza,et al.  Size effect and minimum chip thickness in micromilling , 2015 .