Constraint Satisfaction Problems around Skolem Arithmetic

We study interactions between Skolem Arithmetic and certain classes of Constraint Satisfaction Problems (CSPs). We revisit results of Glass er et al. in the context of CSPs and settle the major open question from that paper, finding a certain satisfaction problem on circuits to be decidable. This we prove using the decidability of Skolem Arithmetic. We continue by studying first-order expansions of Skolem Arithmetic without constants, (N;*), where * indicates multiplication, as CSPs. We find already here a rich landscape of problems with non-trivial instances that are in P as well as those that are NP-complete.

[1]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[2]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[3]  Andrzej Mostowski,et al.  On direct products of theories , 1952, Journal of Symbolic Logic.

[4]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[5]  Michael Pinsker,et al.  Schaefer's Theorem for Graphs , 2015, J. ACM.

[6]  Ivo Düntsch,et al.  Functions Definable by Arithmetic Circuits , 2009, CiE.

[7]  K. Wagner,et al.  The Complexity of Problems Concerning Graphs with Regularities (Extended Abstract) , 1984, MFCS.

[8]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[9]  Artur Jez,et al.  Computational completeness of equations over sets of natural numbers , 2014, Inf. Comput..

[10]  B. Scarpellini Complexity of subcases of Presburger arithmetic , 1984 .

[11]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2010, JACM.

[12]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[13]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .

[14]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[15]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[16]  Ke Yang Integer Circuit Evaluation Is PSPACE-Complete , 2001, J. Comput. Syst. Sci..

[17]  Ju. V. Matijasevic,et al.  ENUMERABLE SETS ARE DIOPHANTINE , 2003 .

[18]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[19]  Peter Jonsson,et al.  Computational complexity of linear constraints over the integers , 2013, Artif. Intell..

[20]  Iain A. Stewart,et al.  Dichotomies for classes of homomorphism problems involving unary functions , 2004, Theor. Comput. Sci..

[21]  H. Putnam,et al.  The Decision Problem for Exponential Diophantine Equations , 1961 .

[22]  Pierre McKenzie,et al.  The Complexity of Membership Problems for Circuits Over Sets of Natural Numbers , 2007, computational complexity.

[23]  Stephen D. Travers The Complexity of Membership Problems for Circuits over Sets of Integers , 2004, MFCS.

[24]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[25]  Christian Glaßer,et al.  Equivalence Problems for Circuits over Sets of Natural Numbers , 2007, Theory of Computing Systems.

[26]  Hans-Georg Breunig The Complexity of Membership Problems for Circuits over Sets of Positive Numbers , 2007, FCT.

[27]  Artur Jez,et al.  Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.

[28]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[29]  Peter Jonsson,et al.  Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..

[30]  Christian Glaßer,et al.  Satisfiability of Algebraic Circuits over Sets of Natural Numbers , 2007, FSTTCS.

[31]  Henryk Kotlarski,et al.  On the incompleteness theorems , 1994, Journal of Symbolic Logic.

[32]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[33]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[34]  Erich Grädel,et al.  Dominoes and the Complexity of Subclasses of Logical Theories , 1989, Ann. Pure Appl. Log..

[35]  Barnaby Martin,et al.  Constraint Satisfaction Problems over the Integers with Successor , 2015, ICALP.

[36]  Artur Jez,et al.  On the Computational Completeness of Equations over Sets of Natural Numbers , 2008, ICALP.