Delft University of Technology Phase Estimation for Distributed Scatterers in InSAR Stacks Using Integer Least Squares Estimation

In recent years, new algorithms have been proposed to retrieve maximum available information in synthetic aperture radar (SAR) interferometric stacks with focus on distributed scatterers. The key step in these algorithms is to optimally estimate single-master (SM) wrapped phases for each pixel from all possible interferometric combinations, preserving useful information and filtering noise. In this paper, we propose a new method for SM-phase estimation based on the integer least squares principle. We model the SM-phase estimation problem in a linear form by introducing additional integer ambiguities and use a bootstrap estimator for joint estimation of SM-phases and the integer unknowns. In addition, a full error propagation scheme is introduced in order to evaluate the precision of the final SM-phase estimates. The main advantages of the proposed method are the flexibility to be applied on any (connected) subset of interferograms and the quality description via the provision of a full covariance matrix of the estimates. Results from both synthetic experiments and a case study over the Torfajökull volcano in Iceland demonstrate that the proposed method can efficiently filter noise from wrapped multibaseline interferometric stacks, resulting in doubling the number of detected coherent pixels with respect to conventional persistent scatterer interferometry.

[1]  K. Sarabandi Derivation of phase statistics from the Mueller matrix , 1992 .

[2]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[4]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[5]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[6]  L. Joughin,et al.  Effective number of looks for a multilook interferometric phase distribution , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[7]  M. Seymour,et al.  Maximum likelihood estimation for SAR interferometry , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[8]  P. Rosen,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[9]  S. Quegan,et al.  A statistical description of polarimetric and interferometric synthetic aperture radar data , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[11]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[12]  D. Sandwell,et al.  Phase gradient approach to stacking interferograms , 1998 .

[13]  P. Teunissen Success probability of integer GPS ambiguity rounding and bootstrapping , 1998 .

[14]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[15]  Richard Bamler,et al.  Multiresolution phase unwrapping for SAR interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[17]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[18]  S. Usai A New Approach for Longterm Monitoring of Deformations by Differential SAR Interferometry , 2001 .

[19]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  T. Wright,et al.  Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry , 2001 .

[21]  P. Teunissen,et al.  Phase ambiguity resolution for stacked radar interferometric data , 2001 .

[22]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[23]  A. Ferretti,et al.  Parameter estimation in PS-InSAR deformation studies using integer least-squares techniques , 2002 .

[24]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[25]  Stefania Usai,et al.  A least squares database approach for SAR interferometric data , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  D. Schmidt Time-dependent land uplift and subsidence in the Santa Clara Valley , 2003 .

[28]  J. Kusche,et al.  Gibbs sampler for computing and propagating large covariance matrices , 2003 .

[29]  Ramon F. Hanssen,et al.  Ambiguity resolution for permanent scatterer interferometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Michele Manunta,et al.  A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  T. Wright,et al.  InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet , 2004, Science.

[32]  N. Adam,et al.  The STUN algorithm for persistent scatterer interferometry , 2005 .

[33]  Howard A. Zebker,et al.  Accurate estimation of correlation in InSAR observations , 2005, IEEE Geoscience and Remote Sensing Letters.

[34]  P. Teunissen On InSAR Ambiguity Resolution For Deformation Monitoring , 2006 .

[35]  A. Hooper Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation , 2006 .

[36]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Stefano Tebaldini,et al.  On the Exploitation of Target Statistics for SAR Interferometry Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Vito Pascazio,et al.  Closed-Form Evaluation of the Second-Order Statistical Distribution of the Interferometric Phases in Dual-Baseline SAR Systems , 2010, IEEE Transactions on Signal Processing.

[39]  P. LaFemina,et al.  Geodetic investigation of plate spreading along a propagating ridge: the Eastern Volcanic Zone, Iceland , 2011 .

[40]  Alessandro Parizzi,et al.  Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results , 2011, IEEE Geoscience and Remote Sensing Letters.

[41]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[42]  S. Jazaeri,et al.  Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory , 2012, Journal of Geodesy.

[43]  A. Hooper,et al.  Recent advances in SAR interferometry time series analysis for measuring crustal deformation , 2012 .

[44]  Jean-Philippe Avouac,et al.  Multi-Link InSAR Time Series: Enhancement of a Wrapped Interferometric Database , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[45]  Yuanyuan Wang,et al.  Retrieval of phase history parameters from distributed scatterers in urban areas using very high resolution SAR data , 2012 .

[46]  Ramon F. Hanssen,et al.  New algorithm for InSAR stack phase triangulation using integer least squares estimation , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[47]  Xiaoli Ding,et al.  Hybrid Approach for Unbiased Coherence Estimation for Multitemporal InSAR , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[48]  F. V. Leijen,et al.  Persistent Scatterer Interferometry based on geodetic estimation theory , 2014 .

[49]  Kanika Goel,et al.  A Distributed Scatterer Interferometry Approach for Precision Monitoring of Known Surface Deformation Phenomena , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Gianfranco Fornaro,et al.  CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Ramon F. Hanssen,et al.  Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Antonio Pepe,et al.  Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Mariantonietta Zonno,et al.  Phase Inconsistencies and Multiple Scattering in SAR Interferometry , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Ramon F. Hanssen,et al.  Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Yuanyuan Wang,et al.  Robust Estimators for Multipass SAR Interferometry , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Hahn Chul Jung,et al.  A Phase-Decomposition-Based PSInSAR Processing Method , 2016, IEEE Transactions on Geoscience and Remote Sensing.