Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation

This paper presents an investigation of using orthogonal constant and higher order stress modes in formulating efficient hybrid elements by equipping the primary idea of Bergan and Hanssen. Two sample elements modified from Pian-Sumihara 5-β plane and Pian-Tong 18-β hexahedral assumed contravariant stress elements are derived. With the suggested admissible simplifications of the flexibility matrices incorporated into the two new elements, new plane and hexahedral elements requiring respectively no and a negligible amount of computing efforts for inverting the flexibility matrices are formed. All, proposed elements are stable, invariant, contain no empirically determined factor and strictly pass the patch test. Popular benchmark problems are studied and the accuracy of the proposed elements is close to their parent models.

[1]  P. Tong A family of hybrid plate elements , 1982 .

[2]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[3]  S. Atluri,et al.  Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-D hybrid-stress elements , 1984 .

[4]  Atef F. Saleeb,et al.  An efficient quadrilateral element for plate bending analysis , 1987 .

[5]  Tarun Kant,et al.  Numerical analysis of thick plates , 1982 .

[6]  P. G. Bergan,et al.  Finite elements based on energy orthogonal functions , 1980 .

[7]  David S. Kang,et al.  A new formulation of hybrid/mixed finite element , 1983 .

[8]  Robert L. Spilker,et al.  Plane isoparametric hybrid‐stress elements: Invariance and optimal sampling , 1981 .

[9]  P. Bergan,et al.  Finite elements with increased freedom in choosing shape functions , 1984 .

[10]  Theodore H. H. Pian,et al.  Axisymmetric solid elements by a rational hybrid stress method , 1985 .

[11]  C. L. Chow,et al.  An incompatible element for axisymmetric structure and its modification by hybrid method , 1991 .

[12]  C.-C. Wu,et al.  Dual zero energy modes in mixed/hybrid elements-definition, analysis and control , 1990 .

[13]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[14]  William E. Bachrach,et al.  An efficient formulation of hexahedral elements with high accuracy for bending and incompressibility , 1987 .

[15]  C. Felippa Parametrized multifield variational principles in elasticity: II. Hybrid functionals and the free formulation , 1989 .

[16]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[17]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[18]  Theodore H. H. Pian,et al.  Relations between incompatible displacement model and hybrid stress model , 1986 .

[19]  Y. K. Cheung,et al.  A new approach for the hybrid element method , 1987 .

[20]  T. Pian,et al.  A rational approach for choosing stress terms for hybrid finite element formulations , 1988 .

[21]  Satya N. Atluri,et al.  An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields , 1983 .

[22]  T. Pian,et al.  On the suppression of zero energy deformation modes , 1983 .

[23]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[24]  K. Sze,et al.  An efficient hybrid quadrilateral Kirchhoff plate bending element , 1991 .

[25]  K. Sze,et al.  A rational formulation of isoparametric hybrid stress elements for three-dimensional stress analysis , 1990 .

[26]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[27]  T. Belytschko,et al.  Efficient implementation of quadrilaterals with high coarse-mesh accuracy , 1986 .

[28]  E. Hinton,et al.  Local least squares stress smoothing for parabolic isoparametric elements , 1975 .

[29]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .