Growth and development of the root system of Norway spruce (Picea abies) in forest stands—a review

Abstract The present article portrays root growth and root system development with special reference to Picea abies . Root phenology and ontogeny are depicted, and the biological responses of the roots to adverse growing conditions appraised. Norway spruce is regarded as a species which is able to grow under a wide range of soil physical and chemical conditions, provided sufficient soil aeration is guaranteed. The root system of spruce is however sensitive to any dislocation of its primary taproot. Nursery handling and planting damage often affect the root system development of the young tree. Soil acidity and Al-toxicity represent other significant restraints to root growth of spruce. Rooting patterns and mycorrhizal communities are influenced by atmospheric deposition of nitrogen and acidity. Root system spread is closely related to the tree’s competitive status in the forest stand and responds to forest management practices. The preference of Norway spruce roots for humus-rich soil horizons and patches is repeatedly reported. Though, a general characterisation of P. abies as a primary ‘surface-rooter’ has been disproved. Different structures and functions of long and short roots can be identified. Periodic shedding of small and fibrous root structures is a natural phenomenon and is influenced by ambient (i.e. climatic) conditions. Nonetheless, adverse growing conditions result in an increased frequency of adventitious root formation. Permanent root system damage will occur when such root replacement strategies fail. The resulting occurrence of root derangement points and the loss of ramification orders, advances from the fine- to the coarse-root structures. The result is an irregular arrangement of the structural root system, with increasing frequency of damaged roots and disturbance of the root system symmetry. Damaged coarse roots are characterised by discolouration following decay. A damage class scheme for Norway spruce that depicts general stages of root system vitality and decay is provided. The work illustrates that root parameters are good indicators of the sustainability of forest sites.

[1]  C. Hecht-Buchholz,et al.  Aluminium‐induced callose formation in root tips of Norway spruce (Picea abies (L.) Karst.) , 1991 .

[2]  M. Sandvik,et al.  Development of containerized Picea abies (L.) Karst. seedlings grown with heavy watering on various peat, perlite and mineral wool mixtures , 1987, New Forests.

[3]  H. Lyr,et al.  Growth Rates and Growth Periodicity of Tree Roots , 1967 .

[4]  G. Gobran,et al.  A conceptual model for nutrient availability in the mineral soil-root system , 1996 .

[5]  中村 賢太郎 ○Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft.(林業の收獲論および造林上の原理)Das Hauptergebnis der 70 jahrigen Arbeiten der(ehem.)Preussischen Forstlichen Versuchsanstalt, WIEDEMANN, Eilhard, 346 S., 1951. , 1952 .

[6]  T. Hutchinson,et al.  Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems , 1987, NATO ASI Series.

[7]  V. Kolesnikov The Root System of Fruit Plants , 2003 .

[8]  H. Vater,et al.  Die Bewurzelung der Kiefer, Fichte und Buche , 1927 .

[9]  M. P. Coutts,et al.  Developmental processes in tree root systems , 1987 .

[10]  H. Persson,et al.  Root Growth and Response to Nitrogen , 2000 .

[11]  J. Wehrmann,et al.  Köstler, J. N., Brückner, E. und Bibelriether, H.: Die Wurzeln der Waldbäume. Verlag Paul Parey, Hamburg und Berlin 1968. 284 Seiten, 135 Abbildungen und 20 Tabellen. Kunstdruckpapier, Ganzleinen, DM 64,— , 1968 .

[12]  I. Kottke,et al.  Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand , 1998, Plant and Soil.

[13]  H. Marschner,et al.  Callose in roots of Norway spruce (Picea abies (L.) Karst.) is a sensitive parameter for aluminium supply at a forest site (Höglwald) , 1998, Plant and Soil.

[14]  H. Ellenberg,et al.  Vegetation Mitteleuropas mit den Alpen , 1984 .

[15]  W. Silver,et al.  Belowground responses as indicators of environmental change , 1993 .

[16]  B. Stimm,et al.  Lexikon der Forstbotanik , 1992 .

[17]  Urban Nilsson,et al.  Vegetation management on grass-dominated clearcuts planted with Norway spruce in southern Sweden , 1999 .

[18]  Erkki Laitakari Die Wurzelforschung in ihrer Beziehung zur praktischen Forstwirtschaft. , 1929 .

[19]  G. Hoffmann,et al.  Untersuchungen über das Wurzel- und Sprosswachstum einiger Gehölze. , 1965 .

[20]  E. Münch,et al.  Bau und Leben unserer Waldbäume , 1897 .

[21]  B. Wilson Root Growth Around Barriers , 1967, Botanical Gazette.

[22]  Old tree root channels in acid soils in the humid tropics: Important for crop root penetration, water infiltration and nitrogen management , 1991 .

[23]  P. Jensén,et al.  Activities of plasma membrane-bound enzymes isolated from roots of spruce (Picea abies) grown in the presence of aluminium , 1994 .

[24]  T. Kozlowski Growth and development of trees. Volume II. Cambial growth, root growth, and reproduction growth. , 1971 .

[25]  H. Majdi,et al.  Spatial distribution of fine roots, rhizosphere and bulk‐soil chemistry in an acidified Picea abies stand , 1993 .

[26]  T. Iversen,et al.  Movement of Cell Organelles and the Geotropic Curvature in Roots of Norway Spruce (Picea abies) , 1978 .

[27]  W. Horst The role of the apoplast in aluminium toxicity and resistance of higher plants: A review† , 1995 .

[28]  T. Ingestad,et al.  Aluminum Toxicity in Forest Tree Seedlings , 1987 .

[29]  H. Fölster,et al.  Reaction of root systems of grand fir (Abies grandis Lindl.) and Norway spruce (Picea abies Karst.) to seasonal waterlogging , 1997 .

[30]  M. P. Coutts,et al.  When is the structural root system determined in Sitka spruce? , 1983, Plant and Soil.

[31]  F. Oberwinkler,et al.  Zur Anatomic gesunder und “kranker” Feinstwurzeln von Fichten: Meristem und Differenzierungen in Wurzelspitzen und Mykorrhizen , 1986 .

[32]  R. Schaetzl,et al.  Tree uprooting: review of terminology, process, and environmental implications , 1989 .

[33]  B. Ulrich,et al.  Effects of Acidic Precipitation on Forest Ecosystems in Europe , 1989 .

[34]  H. Persson,et al.  Nitrogen addition and removal at Gardsjön : effects on fine-root growth and fine-root chemistry , 1998 .

[35]  H. Bibelriether Wurzeluntersuchungen an Tannen und Eichen in Mittelschwaben , 1962, Forstwissenschaftliches Centralblatt.

[36]  Ernst-Detlef Schulze,et al.  Carbon and Nitrogen Cycling in European Forest Ecosystems , 2000, Ecological Studies.

[37]  A. Shigo,et al.  Barriers to decay in conifer roots , 1981 .

[38]  J. Grace,et al.  Wind and Trees: Tree physiological responses , 1995 .

[39]  H. Persson,et al.  Long‐term effects of liming on the fine‐root standing crop of Picea abies and Pinus sylvestris in relation to chemical changes in the soil , 1993 .

[40]  T. Kozlowski Chapter 1 – STRUCTURAL AND GROWTH CHARACTERISTICS OF TREES , 1971 .

[41]  L. Herring,et al.  Early growth of planted spruce , 1984 .

[42]  R. Russell Plant Root Systems , 1982 .

[43]  R. Yanai,et al.  The Ecology of Root Lifespan , 1997 .

[44]  R. F. Sutton,et al.  Root and Root System Terminology , 1983 .

[45]  D. C. F. Fayle,et al.  Distribution of Radial Growth During the Development of Red Pine Root Systems , 1975 .

[46]  F. Woods,et al.  Interspecific Transfer of Ca‐45 and P‐32 by Root Systems , 1964 .

[47]  J. Bauhus,et al.  Going underground - ecological studies in forest soils. , 1999 .

[48]  D. Read,et al.  Mycorrhizas in ecosystems , 1991, Experientia.

[49]  F. C. Thornton,et al.  Response of tree seedlings to aluminum. , 1989, Tree physiology.

[50]  H. J. Praag,et al.  Root growth inhibition effects of holorganic moder humus layer under spruce (Picea abies KARST.) and beech (Fagus sylvatica L.) , 1991, Plant and Soil.

[51]  L. Rytter,et al.  Physiology of carbon allocation in trees , 1996 .

[52]  C. Dobbs,et al.  Form and Development of Conifer Root Systems , 1969 .

[53]  D. Murach,et al.  Response of soil water chemistry and fine-roots to clean rain in a spruce forest ecosystem at Solling, FRG , 1995 .

[54]  D.C.F. Fayle Archy and Diameter of Primary Xylem in Horizontal and Vertical Roots of Red Pine , 1975 .

[55]  Alex L. Shigo,et al.  Successions of Organisms in Discoloration and Decay of Wood , 1967 .

[56]  D. Read Mycorrhiza — The State of the Art , 1999 .

[57]  H. Fritts,et al.  Tree Rings and Climate. , 1978 .

[58]  D. Murach,et al.  Response of a Norway spruce forest ecosystem to drought/rewetting experiments at Solling, Germany , 1995 .

[59]  W. E. Reifsnyder Productivity of Forest Ecosystems , 1972 .

[60]  D. Godbold,et al.  Effects of acid rain on forest processes , 1994 .

[61]  D. Godbold,et al.  Aluminum toxicity and forest decline. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Fayle Extension and Longitudinal Growth During the Development of Red Pine Root Systems , 1975 .

[63]  M. P. Coutts,et al.  Factors affecting the direction of growth of tree roots , 1989 .

[64]  T. C. Nelson,et al.  Damage to recently thinned loblolly pine stands , 1965 .

[65]  H. Wilcox PRIMARY ORGANIZATION OF ACTIVE AND DORMANT ROOTS OF NOBLE FIR, ABIES PROCERA , 1954 .

[66]  E. Reynolds The development of root systems analysed by growth rings , 1983, Plant and Soil.

[67]  H. Kahle Response of roots of trees to heavy metals , 1993 .

[68]  K. Kreutzer Wurzelbildung junger Waldbäume auf Pseudogleyböden , 1961, Forstwissenschaftliches Centralblatt (1948).

[69]  C. C. N. Nielsen,et al.  The development of symmetry, rigidity and anchorage in the structural root system of conifers , 2000 .

[70]  A. Moore Encyclopaedia of plant physiology - new series: Volume 3 Edited by C. R. Stocking and U. Heber Springer; Berlin, 1976 xvii + 517 pages. DM 145, $59.50 , 1978 .

[71]  R. Chaney,et al.  The Physiology of Metal Toxicity in Plants , 1978 .