Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity

Gravitational waves from the binary black hole (BH) merger GW150914 may enlighten our understanding of ultra-luminous X-ray sources (ULXs), as BHs>30Msun can reach luminosities>4x10^39 erg s^-1 without exceeding their Eddington limit. It is then important to study variations of evolutionary channels for merging BHs, which might instead form accreting BHs and become ULXs. It was recently shown that massive binaries with mass ratios close to unity and tight orbits can undergo efficient rotational mixing and evolve chemically homogeneously, resulting in a compact BH binary. We study similar systems by computing ~120000 detailed binary models with the MESA code covering a wide range of initial parameters. For initial mass ratios M2/M1~0.1-0.4, primaries >40Msun can evolve chemically homogeneously, remaining compact and forming a BH without undergoing Roche-lobe overflow. The secondary then expands and transfers mass to the BH, initiating a ULX phase. We predict that ~1 out of 10^4 massive stars evolves this way, and that in the local universe 0.13 ULXs per Msun yr^-1 of star-formation rate are observable, with a strong preference for low-metallicities. At metallicities log Z>-3, BH masses in ULXs are limited to 60Msun due to the occurrence of pair-instability supernovae which leave no remnant, resulting in an X-ray luminosity cut-off. At lower metallicities, very massive stars can avoid exploding as pair-instability supernovae and instead form BHs with masses above 130Msun, producing a gap in the ULX luminosity distribution. After the ULX phase, neutron-star-BH binaries that merge in less than a Hubble time are produced with a formation rate <0.2 Gpc^-3 yr^-1. We expect that upcoming X-ray observatories will test these predictions, which together with additional gravitational wave detections will provide strict constraints on the origin of the most massive BHs that can be produced by stars.

[1]  Joern Wilms,et al.  An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907 , 2016, Science.

[2]  J. Greiner,et al.  Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13 , 2016, 1609.06538.

[3]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star , 2016, 1609.01283.

[4]  K. Van,et al.  Stability of mass transfer from massive giants: double black hole binary formation and ultraluminous X-ray sources , 2016, 1606.04921.

[5]  N. Langer,et al.  Common envelope ejection in massive binary stars - Implications for the progenitors of GW150914 and GW151226 , 2016, 1610.04417.

[6]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[7]  Y. Wang,et al.  Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.

[8]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[9]  V. Kalogera,et al.  DISTINGUISHING BETWEEN FORMATION CHANNELS FOR BINARY BLACK HOLES WITH LISA , 2016, 1606.09558.

[10]  E. Berti,et al.  eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.

[11]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[12]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[13]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[14]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[15]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[16]  A. King,et al.  ULXs: Neutron stars versus black holes , 2016, 1601.03738.

[17]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[18]  I. Mandel Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries , 2015, 1510.03871.

[19]  H. Janka,et al.  CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.

[20]  E. Ramirez-Ruiz,et al.  THE CLOSE STELLAR COMPANIONS TO INTERMEDIATE-MASS BLACK HOLES , 2015, 1508.07000.

[21]  G. Meynet,et al.  Massive star evolution in close binaries:conditions for homogeneous chemical evolution , 2015, 1508.06094.

[22]  C. Evans,et al.  Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18 , 2015, 1506.09132.

[23]  T. Maccarone,et al.  Revisiting the dynamical case for a massive black hole in IC10 X-1 , 2015, 1506.03882.

[24]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[25]  Alessandro Bressan,et al.  The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.

[26]  N. Langer,et al.  Ultra-stripped supernovae: progenitors and fate , 2015, 1505.00270.

[27]  C. I. O. Technology.,et al.  The hyperluminous X-ray source candidate in IC 4320: another HLX bites the dust , 2015, 1503.01711.

[28]  W. L. F. Marcolino,et al.  No breakdown of the radiatively driven wind theory in low-metallicity environments , 2015, 1502.05641.

[29]  C. Evans,et al.  The evolution of rotating very massive stars with LMC composition , 2015, 1501.03794.

[30]  U. Pennsylvania,et al.  A deficit of ultraluminous X-ray sources in luminous infrared galaxies , 2014, 1410.1569.

[31]  Cambridge,et al.  An ultraluminous X-ray source powered by an accreting neutron star , 2014, Nature.

[32]  G. Pietrzynski,et al.  A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source , 2014, Nature.

[33]  M. Mapelli,et al.  ROCHE-LOBE OVERFLOW SYSTEMS POWERED BY BLACK HOLES IN YOUNG STAR CLUSTERS: THE IMPORTANCE OF DYNAMICAL EXCHANGES , 2014, 1408.1406.

[34]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[35]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[36]  J. Bregman,et al.  Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1 , 2013, Nature.

[37]  H. Janka,et al.  Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae , 2013, 1306.0007.

[38]  Liverpool John Moores University,et al.  OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES , 2013, 1303.1213.

[39]  V. Kalogera,et al.  ULTRA-LUMINOUS X-RAY SOURCES IN THE MOST METAL POOR GALAXIES , 2013, 1302.6203.

[40]  Chris L. Fryer,et al.  WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS? , 2013, 1301.5616.

[41]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[42]  Francois Foucart,et al.  Black-hole-neutron-star mergers: Disk mass predictions , 2012, 1207.6304.

[43]  D. Walton,et al.  The most extreme ultraluminous X‐ray sources: evidence for intermediate‐mass black holes? , 2012, 1203.4100.

[44]  M. Davies,et al.  Investigating stellar‐mass black hole kicks , 2012, 1203.3077.

[45]  D. Swartz,et al.  A COMPLETE SAMPLE OF ULTRALUMINOUS X-RAY SOURCE HOST GALAXIES , 2011 .

[46]  H. Sana,et al.  ON THE MASS-LOSS RATE OF MASSIVE STARS IN THE LOW-METALLICITY GALAXIES IC 1613, WLM, AND NGC 3109 , 2011, 1109.5502.

[47]  A. Coleiro,et al.  DISTRIBUTION OF HIGH-MASS X-RAY BINARIES IN THE MILKY WAY , 2011, 1107.0465.

[48]  C. Evans,et al.  Rotating massive main-sequence stars - I. Grids of evolutionary models and isochrones , 2011, 1102.0530.

[49]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[50]  M. Colpi,et al.  Ultra-luminous X-ray sources and remnants of massive metal-poor stars , 2010, 1005.3548.

[51]  V. Kalogera,et al.  THE EFFECT OF STARBURST METALLICITY ON BRIGHT X-RAY BINARY FORMATION PATHWAYS , 2010, 1005.1639.

[52]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[53]  B. Whitney,et al.  THE PRESENT-DAY STAR FORMATION RATE OF THE MILKY WAY DETERMINED FROM SPITZER-DETECTED YOUNG STELLAR OBJECTS , 2010, 1001.3672.

[54]  L. Zampieri,et al.  Low metallicity natal environments and black hole masses in Ultraluminous X-ray Sources , 2009, 0909.1017.

[55]  Didier Barret,et al.  An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49 , 2009, Nature.

[56]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[57]  Normal galaxies in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory , 2009 .

[58]  S. D. Mink,et al.  Rotational mixing in massive binaries - Detached short-period systems , 2009, 0902.1751.

[59]  N. Langer,et al.  Gamma-ray bursts from tidally spun-up Wolf-Rayet stars? , 2008, 0804.0014.

[60]  D. Swartz,et al.  Do Ultraluminous X-Ray Sources Exist in Dwarf Galaxies? , 2008, 0803.1984.

[61]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[62]  N. Madhusudhan,et al.  Models for the Observable System Parameters of Ultraluminous X-Ray Sources , 2007, 0710.3854.

[63]  A. Herrero,et al.  The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars , 2007, 0708.2042.

[64]  M. Peimbert,et al.  Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.

[65]  N. Langer,et al.  Single star progenitors of long gamma-ray bursts - I. Model grids and redshift dependent GRB rate , 2006, astro-ph/0606637.

[66]  G. Weidenspointner,et al.  Radioactive 26Al from massive stars in the Galaxy , 2006, Nature.

[67]  N. Langer,et al.  On the Collapsar Model of Long Gamma-Ray Bursts:Constraints from Cosmic Metallicity Evolution , 2005, astro-ph/0512271.

[68]  S. Davis,et al.  Ultraluminous X-Ray Sources Powered by Radiatively Efficient Two-Phase Super-Eddington Accretion onto Stellar-Mass Black Holes , 2005, astro-ph/0511549.

[69]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[70]  N. Langer,et al.  Which massive stars are gamma-ray burst progenitors? , 2005, astro-ph/0504175.

[71]  F. Walter,et al.  A Chandra X-ray survey of nearby dwarf starburst galaxies - I. Data reduction and results , 2005, astro-ph/0501525.

[72]  Ph. Podsiadlowski,et al.  Stellar-mass black hole binaries as ultraluminous X-ray sources , 2005 .

[73]  S. Rappaport,et al.  Stellar Mass Black Hole Binaries as ULXs , 2004, astro-ph/0408032.

[74]  R. Sunyaev,et al.  HMXB, ULX and star formation , 2004 .

[75]  I. Mirabel,et al.  Formation of a Black Hole in the Dark , 2003, Science.

[76]  S. Rappaport,et al.  On the formation and evolution of black hole binaries , 2002, astro-ph/0207153.

[77]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[78]  M. Begelman,et al.  Eddington Limit and Radiative Transfer in Highly Inhomogeneous Atmospheres , 2002, astro-ph/0204256.

[79]  M. Begelman Super-Eddington Fluxes from Thin Accretion Disks? , 2002, astro-ph/0203030.

[80]  O. Pols,et al.  The evolution of naked helium stars with a neutron star companion in close binary systems , 2002, astro-ph/0201239.

[81]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[82]  H. Falcke,et al.  Population X: Are the super-Eddington X-ray sources beamed jets in microblazars or intermediate mass black holes? , 2001, astro-ph/0112385.

[83]  H. Spruit Dynamo action by differential rotation in a stably stratified stellar interior , 2001, astro-ph/0108207.

[84]  S. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2001, astro-ph/0107037.

[85]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[86]  A. King,et al.  Ultraluminous X-Ray Sources in External Galaxies , 2001, astro-ph/0104333.

[87]  H. Bethe,et al.  Formation of high mass X-ray black hole binaries , 2001, astro-ph/0102379.

[88]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[89]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[90]  Chris L. Fryer,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[91]  N. Langer,et al.  Presupernova Evolution of Rotating Massive Stars. II. Evolution of the Surface Properties , 2000, astro-ph/0005110.

[92]  T. Tauris,et al.  Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales , 2000, The Astrophysical journal.

[93]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[94]  Epping,et al.  Circinus X-1: survivor of a highly asymmetric supernova , 1999, astro-ph/9909148.

[95]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[96]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[97]  A. Tutukov,et al.  The merger rate of neutron star and black hole binaries , 1993 .

[98]  Walter H. G. Lewin,et al.  Accretion-driven stellar X-ray sources , 1983 .

[99]  A. Endal,et al.  The evolution of rotating stars. I - Method and exploratory calculations for a 7-solar-mass star , 1976 .

[100]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[101]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[102]  J. Bardeen,et al.  Kerr Metric Black Holes , 1970, Nature.

[103]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[104]  George Howard Darwin,et al.  VIII. The determination of the secular effects of tidal friction by a graphical method , 1879, Proceedings of the Royal Society of London.