Stochastic tools hidden behind the empirical dielectric relaxation laws

The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

[1]  J. Wehr,et al.  Effective drifts in dynamical systems with multiplicative noise: a review of recent progress , 2016, Reports on progress in physics. Physical Society.

[2]  Aleksander Stanislavsky,et al.  Anomalous diffusion approach to non-exponential relaxation in complex physical systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[3]  O. Rolinski,et al.  Fluorescence kinetics of tryptophan in a heterogeneous environment , 2014, Methods and applications in fluorescence.

[4]  Jeremi K. Ochab,et al.  Scale-Free Fluctuations in Behavioral Performance: Delineating Changes in Spontaneous Behavior of Humans with Induced Sleep Deficiency , 2014, PloS one.

[5]  W. Wang,et al.  Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses , 2013 .

[6]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[7]  A. Jurlewicz,et al.  Fractional governing equations for coupled random walks , 2012, Comput. Math. Appl..

[8]  Aleksander Stanislavsky,et al.  Clustered continuous-time random walks: diffusion and relaxation consequences , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  K. Weron,et al.  Anomalous diffusion approach to dielectric spectroscopy data with independent low- and high-frequency exponents , 2012 .

[10]  R. Schilling,et al.  Brownian Motion: An Introduction to Stochastic Processes , 2012 .

[11]  K. Weron,et al.  The impact of hierarchically constrained dynamics with a finite mean of cluster sizes on relaxation properties , 2012 .

[12]  R. Prosmiti,et al.  Frequency domain description of Kohlrausch response through a pair of Havriliak-Negami-type functions: an analysis of functional proximity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  K. Weron,et al.  Tempered relaxation with clustering patterns , 2011, 1111.3034.

[14]  K. Weron,et al.  Erratum: Anomalous diffusion with under- and overshooting subordination: A competition between the very large jumps in physical and operational times [Phys. Rev. E 82, 051120 (2010)] , 2011 .

[15]  T. Chou,et al.  Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport , 2011, 1110.1783.

[16]  U. Schmidt,et al.  Anomalous diffusion of oligomerized transmembrane proteins. , 2011, The Journal of chemical physics.

[17]  K. Ngai Relaxation and Diffusion in Complex Systems , 2011 .

[18]  J. Trzmiel,et al.  Generalized Mittag-Leffler relaxation of NH4H2PO4: Porous glass composite , 2011 .

[19]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[20]  M. Meerschaert,et al.  Cluster continuous time random walks , 2011 .

[21]  K. Weron,et al.  Anomalous diffusion with under- and overshooting subordination: a competition between the very large jumps in physical and operational times. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  V. Novikov,et al.  Generalization of the Cole–Davidson and Kohlrausch functions to describe the primary response of glass-forming systems , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Aleksander Stanislavsky,et al.  Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.

[24]  Karina Weron,et al.  Overshooting and undershooting subordination scenario for fractional two-power-law relaxation responses. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  K. Weron,et al.  The frequency-domain relaxation response of gallium doped Cd1 − xMnxTe , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Arak M. Mathai,et al.  The H-Function , 2010 .

[27]  Jörg Langowski,et al.  Anomalous diffusion in the presence of mobile obstacles , 2009 .

[28]  G. Taucher‐Scholz,et al.  Distribution of DNA fragment sizes after irradiation with ions , 2009, The European physical journal. E, Soft matter.

[29]  K. Weron,et al.  Subordination scenario of the Cole–Davidson relaxation , 2009, 1111.3038.

[30]  Marcin Magdziarz,et al.  Anomalous diffusion and semimartingales , 2009 .

[31]  Agnieszka Wyłomańska,et al.  Coupled continuous-time random walk approach to the Rachev–Rüschendorf model for financial data , 2009 .

[32]  K. Weron,et al.  Diffusion and relaxation controlled by tempered alpha-stable processes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Teuerle,et al.  Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  K. Weron,et al.  Stretched-exponential photoionization of the metastable defects in gallium doped Cd0.99Mn0.01Te: Statistical origins of the short-time power-law in response data , 2008 .

[35]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[36]  E. al.,et al.  Measurement of the mass difference m(B0)-m(B+) , 2008, 0805.0497.

[37]  Arak M. Mathai,et al.  Special Functions for Applied Scientists , 2008 .

[38]  Karina Weron,et al.  CONTINUOUS-TIME RANDOM WALK APPROACH TO MODELING OF RELAXATION: THE ROLE OF COMPOUND COUNTING PROCESSES ∗ , 2008 .

[39]  Ralf Metzler,et al.  Leapover lengths and first passage time statistics for Lévy flights. , 2007, Physical review letters.

[40]  J. Rosínski Tempering stable processes , 2007 .

[41]  L. Dissado,et al.  The fading of memory during the regression of structural fluctuations , 2007 .

[42]  S. Havriliak,et al.  A complex plane analysis of α‐dispersions in some polymer systems , 2007 .

[43]  Karina Weron,et al.  Anomalous diffusion schemes underlying the Cole–Cole relaxation: The role of the inverse-time α-stable subordinator , 2006 .

[44]  H. Steinhaus,et al.  ANOMALOUS DIFFUSION SCHEMES UNDERLYING THE STRETCHED EXPONENTIAL RELAXATION. THE ROLE OF SUBORDINATORS , 2006 .

[45]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[46]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[47]  A. Einstein Zur Theorie der Brownschen Bewegung [AdP 19, 371 (1906)] , 2005 .

[48]  Albert Einstein,et al.  Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005 .

[49]  Karina Weron,et al.  HAVRILIAK-NEGAMI RESPONSE IN THE FRAMEWORK OF THE CONTINUOUS-TIME RANDOM WALK ∗ , 2005 .

[50]  L. Glebsky MEASURES OF -COMPLEXITY , 2005 .

[51]  W. Coffey,et al.  Microscopic models for dielectric relaxation in disordered systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Mark M. Meerschaert,et al.  Limit theorems for continuous-time random walks with infinite mean waiting times , 2004, Journal of Applied Probability.

[53]  J. Klafter,et al.  On the first passage of one-sided Lévy motions , 2004 .

[54]  Aleksander Stanislavsky,et al.  Probability Interpretation of the Integral of Fractional Order , 2004 .

[55]  A. Stanislavsky Subordinated Random Walk Approach to Anomalous Relaxation in Disordered Systems , 2003 .

[56]  A. Stanislavsky Fractional dynamics from the ordinary Langevin equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  A. Jurlewicz Stochastic foundations of the universal dielectric response , 2003 .

[58]  David A. Benson,et al.  Advection and dispersion in time and space , 2002 .

[59]  K. Weron,et al.  Stochastic Schemes of Dielectric Relaxation in Correlated-Cluster Systems , 2002, cond-mat/0210481.

[60]  Karina Weron,et al.  Relaxation of dynamically correlated clusters , 2002 .

[61]  Jason R. Swedlow,et al.  Cajal Body dynamics and association with chromatin are ATP-dependent , 2002, Nature Cell Biology.

[62]  Hans-Peter Scheffler,et al.  Stochastic solution of space-time fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  K. Weron,et al.  Revised approach to dielectric relaxation of TMACAB crystals near the ferroelectric phase transition , 2001 .

[64]  K. Weron,et al.  Energy criterion in interacting cluster systems , 2001 .

[65]  A. Jurlewicz,et al.  The light scattering relaxation function of glass-forming molecules: a general probabilistic approach , 2001 .

[66]  I. Sokolov,et al.  Lévy flights from a continuous-time process. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[68]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[69]  Thierry Huillet,et al.  On Linnik's continuous-time random walks , 2000 .

[70]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[71]  R. Hilfer FRACTIONAL TIME EVOLUTION , 2000 .

[72]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[73]  K. Weron,et al.  Probabilistic basis for the Cole-Cole relaxation law , 2000 .

[74]  K. Weron,et al.  Infinitely Divisible Waiting-Time Distributions Underlying the Empirical Relaxation Responses , 2000 .

[75]  A. Ruzmaikin,et al.  Anomalous Diffusion of Solar Magnetic Elements , 1999 .

[76]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[77]  K. Weron,et al.  A general probabilistic approach to the universal relaxation response of complex systems , 1999 .

[78]  K. Weron,et al.  On the equivalence of the parallel channel and the correlated cluster relaxation models , 1997 .

[79]  K. Weron,et al.  On the Cole-Cole relaxation function and related Mittag-Leffler distribution , 1996 .

[80]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[81]  I. S. Moskowitz,et al.  Reduction of a Class of Fox-Wright PSI Functions for Certain Rational Parameters , 1995 .

[82]  Marcin Kotulski,et al.  Asymptotic distributions of continuous-time random walks: A probabilistic approach , 1995 .

[83]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Yonezawa,et al.  Anomalous relaxation in the fractal time random walk model. , 1995, Physical review letters.

[85]  Yonezawa,et al.  Anomalous relaxation in fractal structures. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[87]  Stanley,et al.  Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. , 1994, Physical review letters.

[88]  S. Havriliak,et al.  Results from an unbiased analysis of nearly 1000 sets of relaxation data , 1994 .

[89]  Joseph Klafter,et al.  Probability Distributions for Continuous-Time Random Walks with Long Tails , 1994 .

[90]  G. Niklasson A fractal description of the dielectric response of disordered materials , 1993 .

[91]  Karina Weron,et al.  Two forms of self-similarity as a fundamental feature of the power-law dielectric response , 1993 .

[92]  A. Hunt,et al.  Comment on 'A probabilistic mechanism hidden behind the universal power law for dielectric relaxation: general relaxation equation' (and reply) , 1992 .

[93]  K. Weron,et al.  A probabilistic mechanism hidden behind the universal power law for dielectric relaxation : general relaxation equation , 1991 .

[94]  K Weron A probabilistic mechanism hidden behind the universal power law for dielectric relaxation: general relaxation equation , 1991 .

[95]  A. Płonka,et al.  Developments in dispersive kinetics , 1991 .

[96]  R. N. Pillai On Mittag-Leffler functions and related distributions , 1990 .

[97]  G. Weiss,et al.  Transport properties of the continuous-time random walk with a long-tailed waiting-time density , 1989 .

[98]  R. M. Hill,et al.  The fractal nature of the cluster model dielectric response functions , 1989 .

[99]  M. Shlesinger,et al.  Random walks in liquids , 1989 .

[100]  Hajime Takayama,et al.  Cooperative Dynamics in Complex Physical Systems , 1989 .

[101]  DeGuire Mr,et al.  Two-level model for the nonexponential Williams-Watts dielectric relaxation. , 1988 .

[102]  Angelo Vulpiani,et al.  Measures of Complexity , 1988 .

[103]  de la Fuente MR,et al.  Two-level model for the nonexponential Williams-Watts dielectric relaxation. , 1988, Physical Review B (Condensed Matter).

[104]  L. Dissado,et al.  Self-similarity as a fundamental feature of the regression of fluctuations , 1987 .

[105]  A. Płonka Time-Dependent Reactivity of Species in Condensed Media , 1986 .

[106]  P. Hougaard Survival models for heterogeneous populations derived from stable distributions , 1986 .

[107]  J Klafter,et al.  On the relationship among three theories of relaxation in disordered systems. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[108]  K. Weron Relaxation in glassy materials from Lévy stable distributions , 1986 .

[109]  V. Zolotarev One-dimensional stable distributions , 1986 .

[110]  J. Klafter,et al.  Models for dynamically controlled relaxation , 1985 .

[111]  Michael F. Shlesinger,et al.  Derivation of the Kohlrausch-Williams/Watts decay law from activation-energy dispersion , 1985 .

[112]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[113]  L. Dissado The formation of cluster vibrations in imperfectly structured materials , 1984 .

[114]  R. Palmer,et al.  Models of hierarchically constrained dynamics for glassy relaxation , 1984 .

[115]  Michael F. Shlesinger,et al.  Williams-watts dielectric relaxation: A fractal time stochastic process , 1984 .

[116]  E W Montroll,et al.  On the Williams-Watts function of dielectric relaxation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[117]  E. Montroll,et al.  On Lévy (or stable) distributions and the Williams-Watts model of dielectric relaxation , 1984 .

[118]  西本 勝之,et al.  Fractional calculus : integrations and differentiations of arbitrary order , 1984 .

[119]  A. Méhauté,et al.  Introduction to transfer and motion in fractal media: The geometry of kinetics , 1983 .

[120]  R. M. Hill,et al.  A cluster approach to the structure of imperfect materials and their relaxation spectroscopy , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[121]  E. Helfand On inversion of the Williams–Watts function for large relaxation times , 1983 .

[122]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[123]  Michele Caputo,et al.  A model for the fatigue in elastic materials with frequency independent Q , 1979 .

[124]  R. M. Hill,et al.  Non-exponential decay in dielectrics and dynamics of correlated systems , 1979, Nature.

[125]  B. C. Carlson Special functions of applied mathematics , 1977 .

[126]  Yuji Kasahara,et al.  Limit Theorems of Occupation Times for Markov Processes , 1976 .

[127]  R. Mazo On the theory of brownian motion , 1973 .

[128]  N. Bingham Limit theorems for occupation times of Markov processes , 1971 .

[129]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[130]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[131]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[132]  E. Montroll Random walks on lattices , 1969 .

[133]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[134]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[135]  W. Feller,et al.  An Introduction to Probability Theory and its Applications , 1958 .

[136]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[137]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[138]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[139]  S. Bochner Diffusion Equation and Stochastic Processes. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[140]  K. Cole,et al.  Dispersion and Absorption in Dielectrics II. Direct Current Characteristics , 1942 .

[141]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[142]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[143]  J. Maxwell,et al.  The Dynamical Theory of Gases , 1905, Nature.

[144]  Karl Willy Wagner,et al.  Zur Theorie der unvollkommenen Dielektrika , 1913 .

[145]  W. Steubing,et al.  Zur Theorie der Brownschen Bewegung , 1908 .

[146]  E. Schweidler Studien über die Anomalien im Verhalten der Dielektrika , 1907 .

[147]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[148]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[149]  F. Kohlrausch,et al.  Ueber die elastische Nachwirkung bei der Torsion , 1863 .

[150]  R. Kohlrausch Theorie des elektrischen Rückstandes in der Leidener Flasche , 1854 .

[151]  Dispersion and Absorption in Dielectrics 1 , 2022 .