Quantum key distribution system using dual-threshold homodyne detection

In this work we present the principles of a flexible quantum key distribution (QKD) system using quadrature-phase-shift-keying (QPSK) base and symbol encoding and dual-threshold balanced homodyne detection (BHD) scheme. We give its security proofs and we compare its performance experimentally with a photon counting detection scheme.

[1]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[2]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[3]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[4]  Takanori Okoshi Recent advances in coherent optical fiber communication systems , 1987 .

[6]  Gisin,et al.  Quantum cryptography using entangled photons in energy-time bell states , 1999, Physical review letters.

[7]  Kazuro Kikuchi,et al.  Coherent Optical Fiber Communications , 1988 .

[8]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[9]  Bernard Glance,et al.  Performance of homodyne detection of binary PSK optical signals , 1986 .

[10]  Keang-Po Ho,et al.  Phase-Modulated Optical Communication Systems , 2005 .

[11]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[12]  Edward A. Lee,et al.  Performance of coherent optical receivers , 1990, Proc. IEEE.

[13]  Xiang Liu,et al.  Differential phase-shift keying for high spectral efficiency optical transmissions , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Robert L. Cook,et al.  Optical coherent state discrimination using a closed-loop quantum measurement , 2007, Nature.

[15]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[16]  Nicolas Gisin,et al.  Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods , 2004 .

[18]  M. Koashi Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. , 2004, Physical review letters.

[19]  Vernam Cipher printing telegraph systems , 1926, Journal of the A.I.E.E..

[20]  C. Helstrom Quantum detection and estimation theory , 1969 .

[21]  T. Okoshi,et al.  Effect of frequency offset in DPSK phase-diversity optical receivers , 1988 .

[22]  Ryo Namiki,et al.  Security of quantum cryptography using balanced homodyne detection , 2002, quant-ph/0205191.

[23]  A.H. Gnauck,et al.  Optical phase-shift-keyed transmission , 2005, Journal of Lightwave Technology.

[24]  V. Makarov,et al.  Real-time phase tracking in single-photon interferometers. , 2004, Applied optics.

[25]  Oleksiy Pikalo,et al.  Path-length control in an interferometric QKD link , 2003, SPIE Defense + Commercial Sensing.

[26]  Susumu Machida,et al.  Quantum-limited operation of balanced mixer homodyne and heterodyne receivers , 1986 .

[27]  W T Rhodes,et al.  Phase-modulation transmission system for quantum cryptography. , 1999, Optics letters.

[28]  V. Chan,et al.  Noise in homodyne and heterodyne detection. , 1983, Optics letters.

[29]  C. G. Peterson,et al.  Long-distance decoy-state quantum key distribution in optical fiber. , 2006, Physical review letters.

[30]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[31]  R. Namiki,et al.  Quantum cryptography using pulsed homodyne detection , 2000, quant-ph/0008037.

[32]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .