Habitat Discontinuities Separate Genetically Divergent Populations of a Rocky Shore Marine Fish

Habitat fragmentation has been suggested to be responsible for major genetic differentiations in a range of marine organisms. In this study, we combined genetic data and environmental information to unravel the relative role of geography and habitat heterogeneity on patterns of genetic population structure of corkwing wrasse (Symphodus melops), a rocky shore species at the northern limit of its distribution range in Scandinavia. Our results revealed a major genetic break separating populations inhabiting the western and southern coasts of Norway. This genetic break coincides with the longest stretch of sand in the whole study area, suggesting habitat fragmentation as a major driver of genetic differentiation of this obligate rocky shore benthic fish in Scandinavia. The complex fjords systems extending along the western coast of Norway appeared responsible for further regional genetic structuring. Our findings indicate that habitat discontinuities may lead to significant genetic fragmentation over short geographical distances, even for marine species with a pelagic larval phase, as for this rocky shore fish.

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  Ian J. Wang EXAMINING THE FULL EFFECTS OF LANDSCAPE HETEROGENEITY ON SPATIAL GENETIC VARIATION: A MULTIPLE MATRIX REGRESSION APPROACH FOR QUANTIFYING GEOGRAPHIC AND ECOLOGICAL ISOLATION , 2013, Evolution; international journal of organic evolution.

[3]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[4]  S. Gaines,et al.  Geographical patterns of genetic structure in marine species with contrasting life histories , 2009 .

[5]  E. Macpherson,et al.  Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes , 2001 .

[6]  F. Bonhomme,et al.  GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. , 1996 .

[7]  E. B. Gonzalez,et al.  Managing the Genetic Resources in the Intensive Stock Enhancement Program Carried out on Black Sea Bream in Hiroshima Bay, Japan , 2012 .

[8]  G. Bernardi BARRIERS TO GENE FLOW IN EMBIOTOCA JACKSONI, A MARINE FISH LACKING A PELAGIC LARVAL STAGE , 2000, Evolution; international journal of organic evolution.

[9]  Martin I. Taylor,et al.  Environmental selection on transcriptome‐derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus) , 2012, Molecular ecology.

[10]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 1983, Journal of Molecular Evolution.

[11]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[12]  Gilles Guillot,et al.  Inference of structure in subdivided populations at low levels of genetic differentiation - the correlated allele frequencies model revisited , 2008, Bioinform..

[13]  M. Nei,et al.  Estimation of fixation indices and gene diversities , 1983, Annals of human genetics.

[14]  W. Stam,et al.  Eelgrass Zostera marina populations in northern Norwegian fjords are genetically isolated and diverse , 2013 .

[15]  J. Hemmer-Hansen,et al.  Landscape genetics goes to sea , 2007, Journal of biology.

[16]  M. Schwartz,et al.  Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. , 2010, Trends in ecology & evolution.

[17]  S. Kelley,et al.  Isolation by distance, web service , 2005, BMC Genetics.

[18]  R. Castilho,et al.  Northern refugia and recent expansion in the North Sea: the case of the wrasse Symphodus melops (Linnaeus, 1758) , 2012, Ecology and evolution.

[19]  S. Lien,et al.  “Islands of Divergence” in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements , 2016, Genome biology and evolution.

[20]  H. Araki,et al.  Is hatchery stocking a help or harm? Evidence, limitations and future directions in ecological and genetic surveys , 2010 .

[21]  A. Manica,et al.  Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea , 2014, Molecular ecology.

[22]  M. Hellberg,et al.  Genetic assessment of connectivity among marine populations , 2002 .

[23]  G. Bernardi,et al.  Fine-scale biogeography : tidal elevation strongly affects population genetic structure and demographic history in intertidal fishes , 2013 .

[24]  J. Reynolds,et al.  Climate Change and Distribution Shifts in Marine Fishes , 2005, Science.

[25]  D. Ayre,et al.  Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? , 2009, Molecular ecology.

[26]  J. Avise,et al.  Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees , 2005, Genetica.

[27]  W. Darwall,et al.  Implications of life‐history strategies for a new wrasse fishery , 1992 .

[28]  Kimberly A. Selkoe,et al.  Seascape genetics and the spatial ecology of marine populations , 2008 .

[29]  F. Rousset genepop’007: a complete re‐implementation of the genepop software for Windows and Linux , 2008, Molecular ecology resources.

[30]  J. Avise,et al.  Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals , 2000 .

[31]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[32]  O. R. Eigaard,et al.  Does population genetic structure support present management regulations of the northern shrimp (Pandalus borealis) in Skagerrak and the North Sea , 2015 .

[33]  N. Daan Fishes of the North-eastern Atlantic and the Mediterranean: Vol. 1. P.J.P. Whitehead, M.-L. Bauchot, J.-C. Hureau, J. Nielsen and E. Tortonese (Editors). The Unesco Press, 1984, 510 pp., FF250, £37.50, $63.50, ISBN 92-3-002215-2 , 1987 .

[34]  H. Browman,et al.  Wrasse (Labridae) as cleaner fish in salmonid aquaculture – The Hardangerfjord as a case study , 2014 .

[35]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[36]  L. Ciannelli,et al.  Eight decades of sampling reveal a contemporary novel fish assemblage in coastal nursery habitats , 2016, Global change biology.

[37]  Tonje Knutsen Sørdalen,et al.  Male-biased sexual size dimorphism in the nest building corkwing wrasse (Symphodus melops): implications for a size regulated fishery , 2016 .

[38]  M. Nachman,et al.  Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus , 2001, Molecular ecology.

[39]  N. Stenseth,et al.  Bathymetric barriers promoting genetic structure in the deepwater demersal fish tusk (Brosme brosme) , 2009, Molecular ecology.

[40]  T. Kawecki Adaptation to Marginal Habitats , 2008 .

[41]  Glen Gawarkiewicz,et al.  Population connectivity in marine systems : an overview , 2007 .

[42]  Arnaud Estoup,et al.  Geneland: a computer package for landscape genetics , 2005 .

[43]  D. Irwin PHYLOGEOGRAPHIC BREAKS WITHOUT GEOGRAPHIC BARRIERS TO GENE FLOW , 2002, Evolution; international journal of organic evolution.

[44]  D. Jollivet,et al.  Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France , 2005, Heredity.

[45]  R. Kelly,et al.  Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community , 2010, PloS one.

[46]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[47]  K. Johannesson,et al.  Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. , 2006, Molecular ecology.

[48]  S. Campana,et al.  Estimating contemporary early life‐history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches , 2008, Molecular ecology.

[49]  D. Olson,et al.  Seascape Genetics: A Coupled Oceanographic-Genetic Model Predicts Population Structure of Caribbean Corals , 2006, Current Biology.

[50]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[51]  N. Rosenberg distruct: a program for the graphical display of population structure , 2003 .

[52]  Andrew P Hendry,et al.  Climate change, adaptation, and phenotypic plasticity: the problem and the evidence , 2014, Evolutionary applications.

[53]  H. Knutsen,et al.  Climate Change and Genetic Structure of Leading Edge and Rear End Populations in a Northwards Shifting Marine Fish Species, the Corkwing Wrasse (Symphodus melops) , 2013, PloS one.

[54]  E. Poulin,et al.  Phylogeographic Structure in Benthic Marine Invertebrates of the Southeast Pacific Coast of Chile with Differing Dispersal Potential , 2014, PloS one.

[55]  G. Rosenqvist,et al.  Nest Building and Mating in Relation to Male Size in Corkwing Wrasse, Symphodus Melops , 2004, Environmental Biology of Fishes.

[56]  P. Teske,et al.  A review of marine phylogeography in southern Africa , 2011 .

[57]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[58]  L. Liggins,et al.  Seascape Genetics: Populations, Individuals, and Genes Marooned and Adrift , 2013 .

[59]  N. Stenseth,et al.  Spatial scale of genetic structuring in coastal cod Gadus morhua and geographic extent of local populations , 2007 .

[60]  S. Palumbi,et al.  Life history, ecology and the biogeography of strong genetic breaks among 15 species of Pacific rockfish, Sebastes , 2010 .

[61]  H. Knutsen,et al.  Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan , 2015, PloS one.

[62]  L. Meester,et al.  Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization , 2013, Molecular ecology.

[63]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[64]  M. Smale,et al.  Variation in palaeo-shorelines explains contemporary population genetic patterns of rocky shore species , 2014, Biology Letters.

[65]  K. Clements,et al.  New Zealand triplefin fishes (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock , 2009, Molecular ecology.

[66]  F. Bonhomme,et al.  Genetix v. 3.0, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université Montpellier 2, Montpellier. , 1997 .

[67]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 2005, Journal of Molecular Evolution.

[68]  N. Barton,et al.  Analysis of Hybrid Zones , 1985 .

[69]  J. Neigel,et al.  Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics , 1987 .