MEMS-based micro direct methanol fuel cell using microfabrication technology

The microfabrication and performance of a micro direct methanol fuel cell (μDMFC) by silicon processes are presented in this paper. Using the silicon micromachining techniques, including thermal oxidation, optical lithography, wet etching, silicon anodization, physical vapor deposition, electroless plating, laser beams cauterization, and anodic bonding, we have successfully made single μDMFC as small as 10mmx8mmx3mm. The main reason for the use of MEMS technology is the prospective potential for miniaturization and economical mass production of micro direct methanol fuel cells. The double side of silicon wafer deep wet etching was employed for the gas channels and fuel chamber preparation. The formation of porous silicon (PS) layers for electrode supports by electrochemical process is the key technologies to improve the MEMS-based μDMFC. The method of catalyst deposition reported here differs from previous work in the specific method of electroless plating Pt-deposition and platinum with ruthenium (Pt-Ru) co-deposition on the porous silicon substrates. The power density of the single cell reached only 2.5mW/cm2 lower than that single cell with traditional MEA (4.9mW/cm2) at the same operation conditions, but further improved performance of the μDMFC with the electro-catalytic electrodes is expectant. Moreover, using the MEMS technology makes the batch fabrication of μDMFC much easier and can reduce the usage of rare metals.

[1]  Shuzi Hayase,et al.  Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells , 2001 .

[2]  P. Cheng,et al.  Fabrication of a miniature twin-fuel-cell on silicon wafer , 2003 .

[3]  Xiang Zhang,et al.  A micro methanol fuel cell operating at near room temperature , 2003 .

[4]  Tristan Pichonat,et al.  Development of porous silicon-based miniature fuel cells , 2005 .

[5]  R. S. Besser,et al.  Novel microfabrication approaches for directly patterning PEM fuel cell membranes , 2003 .

[6]  Mark A. Shannon,et al.  Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells , 2004 .

[7]  Hong Chang,et al.  Materials and processes for small fuel cells , 2002 .

[8]  Emanuel Peled,et al.  Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications , 2003 .

[9]  Chaoyang Wang,et al.  Development and characterization of a silicon-based micro direct methanol fuel cell , 2004 .

[10]  Y. Yamazaki Application of MEMS technology to micro fuel cells , 2004 .

[11]  Peter Enoksson,et al.  A micro direct methanol fuel cell demonstrator , 2004 .

[12]  Tristan Pichonat,et al.  A new proton-conducting porous silicon membrane for small fuel cells , 2004 .

[13]  Jaesung Han,et al.  Direct methanol fuel-cell combined with a small back-up battery , 2002 .

[14]  R. S. Besser,et al.  A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques , 2004 .