Analysis of continuous-time Kalman filtering under incorrect noise covariances

Abstract The behavior of the continuous-time Kalman filter under incorrect noise covariances is analyzed. The filter performance is quantified by the actual state error covariance. Through this quantity, the characteristic of the filter is examined. Convergence and divergence analyses of the actual state error covariance are given. The significance of the results presented in the paper is that they help one to understand and be able to predict certain behavior of the Kalman filter when inexact values of noise covariances are used.

[1]  R. K. Mehra Optimization of measurement schedules and sensor designs for linear dynamic systems , 1976 .

[2]  T. Kailath,et al.  Initial-condition robustness of linear least squares filtering algorithms , 1974 .

[3]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[4]  V. Kučera A contribution to matrix quadratic equations , 1972 .

[5]  Ian R. Petersen,et al.  A miscellany of results of an equation of Count J. F. Riccati , 1986 .

[6]  C. Desoer,et al.  Slowly varying system x equals A/t/x , 1969 .

[7]  Suwanchai Sangsuk-Iam,et al.  Behavior of the discrete-time Kalman filter under incorrect noise covariances , 1987, 26th IEEE Conference on Decision and Control.

[8]  B. Anderson Stability properties of Kalman-Bucy filters , 1971 .

[9]  S. Iglehart,et al.  Estimation of a dispersion parameter in discrete Kalman filtering , 1974 .

[10]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[11]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[12]  Tosio Kato Perturbation theory for linear operators , 1966 .

[13]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[14]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[15]  B. Molinari The Stabilizing Solution of the Algebraic Riccati Equation , 1973 .

[16]  A. Sage,et al.  Large and small scale sensitivity analysis of optimum estimation algorithms , 1968 .

[17]  Mitsuhiko Toda,et al.  Performance Bounds for Continuous-time Filters in the Presence of Modeling Errors , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Rajnikant V. Patel,et al.  Bounds on performance of nonstationary continuous-time filters under modelling uncertainty , 1984, Autom..

[19]  W. Rudin Principles of mathematical analysis , 1964 .

[20]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[21]  A. P. Sage,et al.  Error analysis of modeling and bias errors in continuous time state estimation , 1971 .

[22]  F. Callier,et al.  Criterion for the convergence of the solution of the Riccati differential equation , 1981 .

[23]  T. Nishimura Error bounds of continuous Kalman filters and the application to orbit determination problems , 1967, IEEE Transactions on Automatic Control.

[24]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[25]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[26]  Vladimír Kucera,et al.  A review of the matrix Riccati equation , 1973, Kybernetika.

[27]  B. Anderson,et al.  Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .