Recognizing faces using Adaptively Weighted Sub-Gabor Array from a single sample image per enrolled subject

In this paper, we propose a new approach for face representation and recognition based on Adaptively Weighted Sub-Gabor Array (AWSGA) when only one sample image per enrolled subject is available. Instead of using holistic representation of face images which is not effective under different facial expressions and partial occlusions, the proposed algorithm utilizes a local Gabor array to represent faces partitioned into sub-patterns. Especially, in order to perform matching in the sense of the richness of identity information rather than the size of a local area and to handle the partial occlusion problem, the proposed method employs an adaptively weighting scheme to weight the Sub-Gabor features extracted from local areas based on the importance of the information they contain and their similarities to the corresponding local areas in the general face image. An extensive experimental investigation is conducted using AR and Yale face databases covering face recognition under controlled/ideal condition, different illumination condition, different facial expression and partial occlusion. The system performance is compared with the performance of four benchmark approaches. The promising experimental results indicate that the proposed method can greatly improve the recognition rates under different conditions.

[1]  Songcan Chen,et al.  Adaptively weighted sub-pattern PCA for face recognition , 2005, Neurocomputing.

[2]  Kin-Man Lam,et al.  Optimal sampling of Gabor features for face recognition , 2004, Pattern Recognit. Lett..

[3]  Wen Gao,et al.  Face recognition using Ada-Boosted Gabor features , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  Linlin Shen,et al.  AdaBoost Gabor Feature Selection for Classification , 2004 .

[6]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[8]  Zhi-Hua Zhou,et al.  Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble , 2005, IEEE Transactions on Neural Networks.

[9]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[10]  Loris Nanni,et al.  Weighted Sub-Gabor for face recognition , 2007, Pattern Recognit. Lett..

[11]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[13]  Yongsheng Gao,et al.  Face Recognition Using Line Edge Map , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  J. Shepherd Studies of cue saliency , 1981 .

[15]  Tomaso A. Poggio,et al.  Face recognition: component-based versus global approaches , 2003, Comput. Vis. Image Underst..

[16]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[17]  Zhi-Hua Zhou,et al.  Face recognition from a single image per person: A survey , 2006, Pattern Recognit..

[18]  A. Martínez,et al.  The AR face databasae , 1998 .

[19]  Wen Gao,et al.  Patch-Based Gabor Fisher Classifier for Face Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[20]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[21]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  H. Ellis Recognizing faces. , 1975, British journal of psychology.

[23]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Tsuhan Chen,et al.  Learning Patch Dependencies for Improved Pose Mismatched Face Verification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[25]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[26]  Joni-Kristian Kämäräinen,et al.  Invariance properties of Gabor filter-based features-overview and applications , 2006, IEEE Transactions on Image Processing.

[27]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[28]  P. Ekman,et al.  Facial Action Coding System: Manual , 1978 .

[29]  Joni-Kristian Kämäräinen,et al.  Simple Gabor feature space for invariant object recognition , 2004, Pattern Recognit. Lett..

[30]  H. Ellis,et al.  Perceiving and remembering faces , 1983 .

[31]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Wen Gao,et al.  AdaBoost Gabor Fisher Classifier for Face Recognition , 2005, AMFG.

[33]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[34]  Vijayan K. Asari,et al.  An improved face recognition technique based on modular PCA approach , 2004, Pattern Recognit. Lett..

[35]  Aleix M. Martínez,et al.  Recognition of partially occluded and/or imprecisely localized faces using a probabilistic approach , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[36]  LinLin Shen,et al.  Gabor wavelets and General Discriminant Analysis for face identification and verification , 2007, Image Vis. Comput..

[37]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[38]  C. Darwin The Expression of the Emotions in Man and Animals , .

[39]  Yutao Qi,et al.  Robust visual similarity retrieval in single model face databases , 2005, Pattern Recognit..

[40]  Daoqiang Zhang,et al.  Enhanced (PC)2 A for face recognition with one training image per person , 2004, Pattern Recognit. Lett..

[41]  Dennis Gabor,et al.  Theory of communication , 1946 .

[42]  Jeffery R. Price,et al.  Face recognition using direct, weighted linear discriminant analysis and modular subspaces , 2005, Pattern Recognit..

[43]  Yee-Hong Yang,et al.  Face recognition approach based on rank correlation of Gabor-filtered images , 2002, Pattern Recognit..