Coupled cavities and band-edge slow-light effects in periodic waveguides

We demonstrate, theoretically and experimentally, that the modes of coupled cavities created in periodic waveguides can depend critically on the lateral shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, which frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion at the photonic band-edge. We illustrate our approach through direct numerical modelling of cavities created in arrays of dielectric rods, nanobeam structures, and two-dimensional photonic-crystal waveguides. We also present experimental results for coupled rod cavities confirming our predictions.

[1]  Steven G. Johnson,et al.  Evanescent-wave bonding between optical waveguides. , 2005, Optics letters.

[2]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[3]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.

[4]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[5]  Andrei Lavrinenko,et al.  Nanopillars photonic crystal waveguides. , 2004, Optics express.

[6]  Fernando L. Teixeira,et al.  Numerical study of photonic crystals with a split band edge : Polarization dependence and sensitivity analysis , 2008 .

[7]  Yuri S. Kivshar,et al.  Slow-light dispersion in coupled periodic waveguides , 2008 .

[8]  Aaron Matthews,et al.  Experimental studies of the internal Goos-Hanchen shift for self-collimated beams in two-dimensional microwave photonic crystals , 2008, 0808.1607.

[9]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[10]  Masaya Notomi,et al.  Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity , 2007 .

[11]  Lech Wosinski,et al.  Polarization beam splitter based on a two-dimensional photonic crystal of pillar type , 2006 .

[12]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[13]  Emmanuel Picard,et al.  An air-slotted nanoresonator relying on coupled high Q small V Fabry-Perot nanocavities , 2009 .

[14]  Sailing He,et al.  High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal , 2006 .

[15]  Toshihiko Baba,et al.  Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. , 2009, Optics letters.

[16]  Technical University of Denmark,et al.  Coupled nanopillar waveguides optical properties and applications , 2007, 0710.0054.

[17]  Demetrios N. Christodoulides,et al.  Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties , 2002 .

[18]  P. Deotare,et al.  Coupled photonic crystal nanobeam cavities , 2009, 0905.0109.

[19]  M. Notomi,et al.  Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs. , 2006, Physical review letters.

[20]  Dmitry N. Chigrin,et al.  Out-of-phase coupled periodic waveguides: a “couplonic” approach , 2007 .

[21]  Yuri S. Kivshar,et al.  Observation of enhanced beaming from photonic crystal waveguides , 2008, 0801.1712.

[22]  Yaron Silberberg,et al.  Discretizing light behaviour in linear and nonlinear waveguide lattices , 2003, Nature.

[23]  Sangwoo Ha,et al.  Dispersion extraction with near-field measurements in periodic waveguides. , 2009, Optics express.

[24]  土屋 一郎,et al.  Ultra-High-Q Photonic Double-Heterostructure Nanocavity , 2005 .

[25]  Masaya Notomi,et al.  Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect , 2006 .

[26]  Henri Benisty,et al.  General recipe for flatbands in photonic crystal waveguides. , 2009, Optics express.

[27]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[28]  M. Notomi,et al.  Ultrahigh-Q nanocavity with 1D photonic gap. , 2008, Optics express.

[29]  Ilya Vitebskiy,et al.  Slow-wave resonance in periodic stacks of anisotropic layers , 2007, 0705.3495.

[30]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[31]  Clivia M. Sotomayor Torres,et al.  Numerical characterization of nanopillar photonic crystal waveguides and directional couplers , 2005 .

[32]  A. Chabanov Strongly Resonant Transmission of Electromagnetic Radiation in Periodic Anisotropic Layered Media , 2007, 0709.1250.

[33]  Yasuhiko Arakawa,et al.  1.5-μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab , 2004 .

[34]  Toshihiko Baba,et al.  Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. , 2007, Optics letters.

[35]  Steven G. Johnson,et al.  Microcavity confinement based on an anomalous zero group-velocity waveguide mode. , 2005, Optics letters.