Dating cryptodiran nodes: origin and diversification of the turtle superfamily Testudinoidea.

[1]  W. Joyce,et al.  Congruence, non-homology, and the phylogeny of basal turtles , 2012 .

[2]  I. Danilov A New Lindholmemydid Genus (Testudines: Lindholmemydidae) from the Mid-Cretaceous of Uzbekistan , 2011 .

[3]  Yuchi Zheng,et al.  Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (order Caudata). , 2011, Molecular biology and evolution.

[4]  W. Joyce,et al.  A new kinosternoid from the Late Cretaceous Hell Creek Formation of North Dakota and Montana and the origin of the Dermatemys mawii lineage , 2011 .

[5]  T. Velivetskaya,et al.  Cretaceous climatic oscillations in the Bering area (Alaska and Koryak Upland): Isotopic and palaeontological evidence , 2011 .

[6]  A. Rhodin,et al.  Turtles of the World, 2010 Update: Annotated Checklist of Taxonomy, Synonymy, Distribution, and Conservation Status , 2010 .

[7]  W. Joyce,et al.  A review of the Mesozoic turtles of the Junggar Basin (Xinjiang, Northwest China) and the paleobiogeography of Jurassic to Early Cretaceous Asian testudinates , 2010, Palaeobiodiversity and Palaeoenvironments.

[8]  H. Shaffer,et al.  Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. , 2010, Molecular phylogenetics and evolution.

[9]  E. S. Gaffney,et al.  The cranial morphology of Kayentachelys, an Early Jurassic cryptodire, and the early history of turtles , 2009 .

[10]  A. Tripati,et al.  Climate sensitivity to Arctic seaway restriction during the early Paleogene , 2009 .

[11]  F. Janzen,et al.  The Phylogenetic Position of the Snapping Turtles (Chelydridae) Based on Nucleotide Sequence Data , 2009, Copeia.

[12]  V. N. Beniamovski,et al.  Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic evolution , 2009 .

[13]  P. Barrett,et al.  A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles , 2009, Proceedings of the Royal Society B: Biological Sciences.

[14]  H. Shaffer,et al.  Conflicting mitochondrial and nuclear phylogenies for the widely disjunct Emys (Testudines: Emydidae) species complex, and what they tell us about biogeography and hybridization. , 2009, Systematic biology.

[15]  R. Russell,et al.  Recoding of Translation in Turtle Mitochondrial Genomes: Programmed Frameshift Mutations and Evidence of a Modified Genetic Code , 2008, Journal of Molecular Evolution.

[16]  H. Shaffer,et al.  Developing markers for multilocus phylogenetics in non-model organisms: A test case with turtles. , 2008, Molecular phylogenetics and evolution.

[17]  Minh Le,et al.  Phylogenetic relationships and biogeographical history of the genus Rhinoclemmys Fitzinger, 1835 and the monophyly of the turtle family Geoemydidae (Testudines: Testudinoidea) , 2008 .

[18]  J. Sterli A new, nearly complete stem turtle from the Jurassic of South America with implications for turtle evolution , 2008, Biology Letters.

[19]  J. F. Parham,et al.  A Reassessment Of Some Poorly Known Turtles From the Middle Jurassic Of China, With Comments On the Antiquity Of Extant Turtles , 2008 .

[20]  J. F. Parham,et al.  Caveats on the Use of Fossil Calibrations for Molecular Dating: A Comment on Near et al. , 2007, The American Naturalist.

[21]  H. Shaffer,et al.  Delimiting species in recent radiations. , 2007, Systematic biology.

[22]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[23]  Michael S. Y. Lee,et al.  Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. , 2007, Systematic biology.

[24]  Michael S. Y. Lee,et al.  Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds , 2007, Biology Letters.

[25]  W. Joyce Phylogenetic Relationships of Mesozoic Turtles , 2007 .

[26]  S. Hervet THE OLDEST EUROPEAN PTYCHOGASTERID TURTLE (TESTUDINOIDEA) FROM THE LOWERMOST EOCENE AMBER LOCALITY OF LE QUESNOY (FRANCE, YPRESIAN, MP7) , 2006 .

[27]  Tony O’Hagan Bayes factors , 2006 .

[28]  E. S. Gaffney,et al.  EVOLUTION OF THE SIDE-NECKED TURTLES: THE FAMILIES BOTHREMYDIDAE, EURAXEMYDIDAE, AND ARARIPEMYDIDAE , 2006 .

[29]  J. F. Parham,et al.  A REDESCRIPTION OF ‘PLESIOCHELYS’ TATSUENSIS FROM THE LATE JURASSIC OF CHINA, WITH COMMENTS ON THE ANTIQUITY OF THE CROWN CLADE CRYPTODIRA , 2006 .

[30]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[31]  James F Parham,et al.  The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA , 2005, BMC Evolutionary Biology.

[32]  D. Martill,et al.  SOLNHOFEN‐STYLE SOFT‐TISSUE PRESERVATION IN A NEW SPECIES OF TURTLE FROM THE CRATO FORMATION (EARLY CRETACEOUS, APTIAN) OF NORTH‐EAST BRAZIL , 2005 .

[33]  H. Shaffer,et al.  Molecular phylogenetics and evolution of turtles. , 2005, Molecular phylogenetics and evolution.

[34]  H. Shaffer,et al.  Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.

[35]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[36]  H. Shaffer,et al.  Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). , 2004, Systematic biology.

[37]  J. F. Parham,et al.  DEVELOPING A PROTOCOL FOR THE CONVERSION OF RANK-BASED TAXON NAMES TO PHYLOGENETICALLY DEFINED CLADE NAMES, AS EXEMPLIFIED BY TURTLES , 2004 .

[38]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[39]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[40]  W. Joyce,et al.  Palaeoecology of Triassic stem turtles sheds new light on turtle origins , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  R. Berner,et al.  CO2 as a Primary Driver of Phanerozoic Climate Change , 2003 .

[42]  H. Jenkyns Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  J. F. Parham,et al.  THE ANTIQUITY OF AFRICAN TORTOISES , 2003 .

[44]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[45]  A. Alekseev,et al.  Cretaceous palaeogeography of the North-Eastern Peri-Tethys , 2003 .

[46]  F. Cecconi,et al.  Structural and Sequence Evolution of U17 Small Nucleolar RNA (snoRNA) and Its Phylogenetic Congruence in Chelonians , 2003, Journal of Molecular Evolution.

[47]  D. Brinkman A review of nonmarine turtles from the Late Cretaceous of Alberta , 2003 .

[48]  Hirohisa Kishino,et al.  Divergence time and evolutionary rate estimation with multilocus data. , 2002, Systematic biology.

[49]  M. D. L. Fuente Oldest world Chelidae (Chelonii, Pleurodira), from the Cretaceous of Patagonia, Argentina , 2001 .

[50]  Fredrik Ronquist,et al.  Patterns of animal dispersal, vicariance and diversification in the Holarctic , 2001 .

[51]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[52]  R. Norris,et al.  Warm tropical ocean surface and global anoxia during the mid-Cretaceous period , 2001, Nature.

[53]  W. Bruno,et al.  Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.

[54]  R. Hirayama,et al.  DISTRIBUTION AND BIOGEOGRAPHY OF NON-MARINE CRETACEOUS TURTLES , 2000 .

[55]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[56]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[57]  J. Wiens Combining data sets with different phylogenetic histories. , 1998, Systematic biology.

[58]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[59]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[60]  H. Shaffer,et al.  Tests of turtle phylogeny: molecular, morphological, and paleontological approaches. , 1997, Systematic biology.

[61]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[62]  John J. Wiens,et al.  Polymorphic Characters in Phylogenetic Systematics , 1995 .

[63]  J. Iverson A revised checklist with distribution maps of the turtles of the world , 1992 .

[64]  E. S. Gaffney,et al.  Sinaspideretes is not the oldest trionychid turtle , 1992 .

[65]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[66]  S. Gaffney,et al.  Evolution of the Side-Necked Turtles: the Family Podocnemididae (project) , 2014 .

[67]  N. Galtier,et al.  RNA extraction from sauropsids blood: evaluation and improvement of methods , 2011 .

[68]  Robert C Thomson,et al.  Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. , 2010, Systematic biology.

[69]  Yoshio Sato,et al.  A New Species of Pseudohyria (Matsumotoina) (Bivalvia: Trigonioidoidea) from the Early Cretaceous Sao Khua Formation, Khorat Group, Northeastern Thailand , 2010 .

[70]  E. Buffetaut,et al.  Basilochelys macrobios n. gen. and n. sp., a large cryptodiran turtle from the Phu Kradung Formation (latest Jurassic-earliest Cretaceous) of the Khorat Plateau, NE Thailand , 2009 .

[71]  E. Buffetaut,et al.  Turtle assemblages of the Khorat Group (Late Jurassic-Early Cretaceous) of NE Thailand and their palaeobiogeographical significance , 2009 .

[72]  W. Joyce,et al.  The cranial anatomy of the Early Jurassic turtle Kayentachelys aprix , 2007 .

[73]  François Escuillié,et al.  Rhinochelys (Chelonioidea: Protostegidae) from the Late Cretaceous (Cenomanian) of Nammoura, Lebanon , 2006 .

[74]  Yong Wang,et al.  An index of substitution saturation and its application. , 2003, Molecular phylogenetics and evolution.

[75]  M. Godinot Arguments for a mammalian and reptilian dispersal from Asia to Europe during the Paleocene-Eocene boundary interval , 2003 .

[76]  M. Salemi,et al.  The phylogenetic handbook : a practical approach to DNA and protein phylogeny , 2003 .

[77]  I. Danilov Gravemys Sukhanov and Narmandakh, 1983 (Testudinoidea: Lindholmemydidae) from the Late Cretaceous of Asia: new data , 2003 .

[78]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[79]  A. Patricia,et al.  TURTLE DIVERSITY AND ABUNDANCE THROUGH THE LOWER EOCENE WILLWOOD FORMATION OF THE SOUTHERN BIGHORN BASIN , 2001 .

[80]  I. Danilov,et al.  New data on lindholmemydid turtle Lindholmemys from the Late Cretaceous of Mongolia , 2001 .

[81]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[82]  P. Meylan Peltochelys Dollo and the relationships among the genera of the Carettochelyidae (Testudines: Reptilia) , 1988 .

[83]  Chen Pei-ji Cretaceous paleogeography in China , 1987 .

[84]  E. S. Gaffney Phylogeny of the chelydrid turtles : a study of shared derived characters in the skull / Eugene S. Gaffney --. , 1975 .

[85]  J. Claude,et al.  EARLY EOCENE TESTUDINOID TURTLES FROM SAINT-PAPOUL, FRANCE, WITH COMMENTS ON THE EARLY EVOLUTION OF MODERN TESTUDINOIDEA , 2022 .

[86]  Gapped BLAST and PSI-BLAST: A new , 1997 .