TRAM: A Design Methodology for High-Performance, Easily Testable, Multimegabit RAM's

An architecture is proposed for multimegabit dynamic RAMs (random-access memories) that achieves higher testability and performance than the conventional four-quadrant RAMs. Applying the principle of divide and conquer, the RAM is partitioned into modules, each appearing as the leaf node of a binary interconnect network. Such a network carries the address/data/control bus, permitting the nodes to communicate among themselves as well as with the outside world. This architecture is shown to be easily testable. Parallelism in testing and partial self-test result in a large savings of testing time; the savings is independent of the test algorithm used. Unlike other testability schemes, this approach promises improved performance with only a small increase in chip area. It is also shown that the architecture is easily partionable and restructurable, with potential for yield and reliability improvement. >

[1]  G.W. Taylor,et al.  Taper isolated dynamic gain RAM cell , 1978, 1978 International Electron Devices Meeting.

[2]  Ravindra Nair Comments on "An Optimal Algorithm for Testing Stuck-at Faults in Random Access Memories" , 1979, IEEE Trans. Computers.

[3]  John P. Hayes,et al.  Detection oF Pattern-Sensitive Faults in Random-Access Memories , 1975, IEEE Transactions on Computers.

[4]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[5]  R.P. Cenker,et al.  A fault-tolerant 64K dynamic random-access memory , 1979, IEEE Transactions on Electron Devices.

[6]  P.W. Wyatt,et al.  A Wafer-Scale Digital Integrator Using Restructurable VSLI , 1985, IEEE Journal of Solid-State Circuits.

[7]  W.R. Moore,et al.  A review of fault-tolerant techniques for the enhancement of integrated circuit yield , 1986, Proceedings of the IEEE.

[8]  T. Mano,et al.  A fault-tolerant 256K RAM fabricated with molybdenum-polysilicon technology , 1980, IEEE Journal of Solid-State Circuits.

[9]  Paul H. Bardell,et al.  Self-Test of Random Access Memories , 1985, ITC.

[10]  V.L. Rideout,et al.  One-device cells for dynamic random-access memories: A tutorial , 1979, IEEE Transactions on Electron Devices.

[11]  Dhiraj K. Pradhan,et al.  Fault-tolerant computing : theory and techniques , 1986 .

[12]  Marco Annaratone Digital CMOS Circuit Design , 1986 .

[13]  Carlos R. P. Hartmann,et al.  An Algorithm for Testing Random Access Memories , 1977, IEEE Transactions on Computers.

[14]  C. Thomborson,et al.  A Complexity Theory for VLSI , 1980 .

[15]  P. Chatterjee,et al.  Leakage studies in high-density dynamic MOS memory devices , 1979 .

[16]  C. H. Stapper,et al.  Yield Model for Productivity Optimization of VLSI Memory Chips with Redundancy and Partially Good Product , 1980, IBM J. Res. Dev..

[17]  Franco P. Preparata,et al.  A Critique and an Appraisal of VLSI Models of Computation. , 1981 .

[18]  Younggap You,et al.  A Self-Testing Dynamic RAM Chip , 1985, IEEE Journal of Solid-State Circuits.

[19]  H. T. Kung,et al.  The chip complexity of binary arithmetic , 1980, STOC '80.

[20]  J. Yamada,et al.  Circuit techniques for a VLSI memory , 1983 .

[21]  Daniel W. Dobberpuhl,et al.  The design and analysis of VLSI circuits , 1985 .

[22]  M. Wada,et al.  A redundancy circuit for a fault-tolerant 256K MOS RAM , 1982, IEEE Journal of Solid-State Circuits.

[23]  Jacob A. Abraham,et al.  Efficient Algorithms for Testing Semiconductor Random-Access Memories , 1978, IEEE Transactions on Computers.

[24]  Bernard Chazelle,et al.  Census functions: An approach to VLSI upper bounds , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[25]  D. Erb Stratified charge memory , 1978, 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[26]  A. C. Dumbri,et al.  A 256K dynamic random access memory , 1982, IEEE Journal of Solid-State Circuits.

[27]  A.F. Tasch,et al.  The Hi-C RAM cell concept , 1977, IEEE Transactions on Electron Devices.

[28]  Sudhakar M. Reddy,et al.  A March Test for Functional Faults in Semiconductor Random Access Memories , 1981, IEEE Transactions on Computers.

[29]  Frank Thomson Leighton,et al.  Wafer-Scale Integration of Systolic Arrays , 1985, IEEE Trans. Computers.

[30]  T. Sridhar A New Parallel Test Approach for Large Memories , 1986, IEEE Design & Test of Computers.

[31]  Masahiko Oka,et al.  A Defect-Tolerant Design for Full-Wafer Memory LSI , 1983, ESSCIRC '83: Ninth European Solid-State Circuits Conference.

[32]  Carlos R. P. Hartmann,et al.  An Optimal Algorithm for Testing Stuck-at Faults in Random Access Memories , 1977, IEEE Transactions on Computers.

[33]  G.W. Taylor,et al.  A survey of high-density dynamic RAM cell concepts , 1979, IEEE Transactions on Electron Devices.

[34]  Ellis Horowitz,et al.  The Binary Tree as an Interconnection Network: Applications to Multiprocessor Systems and VLSI , 1981, IEEE Transactions on Computers.

[35]  M.R. Guidry,et al.  An integrated test concept for switched-capacitor dynamic MOS RAM's , 1977, IEEE Journal of Solid-State Circuits.

[36]  Magdy S. Abadir,et al.  Functional Testing of Semiconductor Random Access Memories , 1983, CSUR.

[37]  Christos A. Papachristou,et al.  An Improved Method for Detecting Functional Faults in Semiconductor Random Access Memories , 1985, IEEE Transactions on Computers.

[38]  Algirdas Avizienis,et al.  Fault-Tolerant Design for VLSI: Effect of Interconnect Requirements on Yield Improvement of VLSI Designs , 1982, IEEE Transactions on Computers.

[39]  C.H. Stapper,et al.  Integrated circuit yield statistics , 1983, Proceedings of the IEEE.

[40]  John P. Hayes Testing Memories for Single-Cell Pattern-Sensitive Faults , 1980, IEEE Transactions on Computers.

[41]  Sudhakar M. Reddy,et al.  Test Procedures for a Class of Pattern-Sensitive Faults in Semiconductor Random-Access Memories , 1980, IEEE Transactions on Computers.

[42]  T. Sakurai,et al.  Approximation of wiring delay in MOSFET LSI , 1983, IEEE Journal of Solid-State Circuits.