Quasi Newton techniques generate identical points II: The proofs of four new theorems
暂无分享,去创建一个
[1] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[2] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[3] H. Y. Huang. Unified approach to quadratically convergent algorithms for function minimization , 1970 .
[4] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[5] Bruce A. Murtagh,et al. Computational Experience with Quadratically Convergent Minimisation Methods , 1970, Comput. J..
[6] L. Dixon. Variable metric algorithms: Necessary and sufficient conditions for identical behavior of nonquadratic functions , 1972 .
[7] M. Powell. On the Convergence of the Variable Metric Algorithm , 1971 .
[8] L. C W. Dixon,et al. Quasi-newton algorithms generate identical points , 1972, Math. Program..
[9] D. Shanno,et al. Optimal conditioning of quasi-Newton methods , 1970 .
[10] J. Greenstadt. Variations on variable-metric methods. (With discussion) , 1970 .
[11] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[12] Roger Fletcher,et al. A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..
[13] C. G. Broyden. Quasi-Newton methods and their application to function minimisation , 1967 .
[14] J. Greenstadt. Variations on Variable-Metric Methods , 1970 .