Visual Object Detection by Specifying the Scale and Rotation Transformations

We here propose a simple but highly potential algorithm to detect a model object's position on an input image by determining the initially unknown transformational states of the model object, in particular, size and 2D-rotation. In this algorithm, a single feature is extracted around or at the center of the input image through 2D-Gabor wavelet transformation, in order to find not only the most likely relative size and rotation to the model object, but also the most appropriate positional region on the input image for detecting the correct relative transformational states. We also show the reliable function on the face images of different persons, or of different appearance in the same person.