Probability Models for Ranking Data

Probability modeling for ranking data is an efficient way to understand people’s perception and preference on different objects. Various probability models for ranking data have been developed, particularly in the last decade where many new problems involving a large number of objects emerged. In their review paper on probability models for ranking data, Critchlow et al. (1991) broadly categorized these models into four classes: (1) order statistics models, (2) paired comparison models, (3) distance-based models, and (4) multistage models. Since their publication in 1991, variants of these models and new models have been developed. In this chapter, we will introduce these four classes of models and describe their properties.

[1]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[2]  Graham J. G. Upton,et al.  Biases in Local Government Elections Due to Position on the Ballot Paper , 1974 .

[3]  R. J. Henery,et al.  Permutation Probabilities as Models for Horse Races , 1981 .

[4]  Jerry A. Hausman and Paul A. Ruud.,et al.  Specifying and Testing Econometric Models for Rank-ordered Data with an Application to the Demand for Mobile and Portable Telephones , 1986 .

[5]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[6]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[7]  Multivariate Extreme Value Distributions and Coverage of Ranking Probabilities. , 2001, Journal of mathematical psychology.

[8]  A. Karlqvist,et al.  Spatial interaction theory and planning models , 1978 .

[9]  R. Henery Permutation probabilities for gamma random variables , 1983, Journal of Applied Probability.

[10]  Dale J. Poirier,et al.  Rank‐ordered logit models: An empirical analysis of Ontario voter preferences , 1994 .

[11]  Hal S. Stern,et al.  A continuum of paired comparisons models , 1990 .

[12]  H. E. Daniels,et al.  Rank Correlation and Population Models , 1950 .

[13]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[14]  L. Thurstone,et al.  A low of comparative judgement , 1927 .

[15]  M. Fligner,et al.  Distance Based Ranking Models , 1986 .

[16]  Ralph A. Bradley,et al.  RANKING IN TRIPLE COMPARISONS , 1959 .

[17]  A. A. J. Marley,et al.  Some Probabilistic Models of Simple Choice and Ranking , 1968 .

[18]  I. Richard Savage,et al.  CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS THE TWO SAMPLE CASE: FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS , 1956 .

[19]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[20]  Joachim M. Buhmann,et al.  Cluster analysis of heterogeneous rank data , 2007, ICML '07.

[21]  Sophia Rabe-Hesketh,et al.  Multilevel logistic regression for polytomous data and rankings , 2003 .

[22]  Paul D. Feigin Modelling and Analysing Paired Ranking Data , 1993 .

[23]  W. R. Buckland,et al.  Contributions to Probability and Statistics , 1960 .

[24]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[25]  D. Critchlow Metric Methods for Analyzing Partially Ranked Data , 1986 .

[26]  Jerry A. Hausman,et al.  Assessing the potential demand for electric cars , 1981 .

[27]  J. Marden,et al.  Use of Nested Orthogonal Contrasts in Analyzing Rank Data , 1992 .

[28]  Peter McCullagh,et al.  Permutations and Regression Models , 1993 .

[29]  L. Beckett,et al.  Maximum Likelihood Estimation in Mallows’s Model Using Partially Ranked Data , 1993 .

[30]  Dennis Fok,et al.  A rank-ordered logit model with unobserved heterogeneity in ranking capabilities. , 2007 .

[31]  L. Thurstone A law of comparative judgment. , 1994 .

[32]  G. M. Tallis,et al.  An Alternative Approach to the Analysis of Permutations , 1983 .

[33]  M. Fligner,et al.  Multistage Ranking Models , 1988 .

[34]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[35]  Joseph S. Verducci,et al.  Probability models on rankings. , 1991 .

[36]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[37]  Joseph S. Verducci,et al.  Probability Models and Statistical Analyses for Ranking Data , 1992 .

[38]  P. Diaconis A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .

[39]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[40]  P. Zarembka Frontiers in econometrics , 1973 .

[41]  A. Pekec,et al.  The repeated insertion model for rankings: Missing link between two subset choice models , 2004 .

[42]  Xu Liqun,et al.  A multistage ranking model , 2000 .

[43]  Ulf Böckenholt,et al.  Applications of Thurstonian Models to Ranking Data , 1993 .

[44]  Randall G. Chapaaan,et al.  Exploiting Rank Ordered Choice Set Data within the Stochastic Utility Model , 1982 .

[45]  D. Critchlow,et al.  Detecting a Trend in Paired Rankings , 1992 .

[46]  Hal S. Stern,et al.  Models for Distributions on Permutations , 1990 .

[47]  I. Richard Savage,et al.  CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS- THE "TREND" CASE' , 1957 .

[48]  Michael A. Fligner,et al.  A non-iterative procedure for maximum likelihood estimation of the parameters of mallows' model based on partial rankings , 1998 .

[49]  Philip L. H. Yu,et al.  Author's Personal Copy Computational Statistics and Data Analysis Mixtures of Weighted Distance-based Models for Ranking Data with Applications in Political Studies , 2022 .

[50]  Paul D. Allison,et al.  Logit Models for Sets of Ranked Items , 1994 .

[51]  J. Yellott The relationship between Luce's Choice Axiom, Thurstone's Theory of Comparative Judgment, and the double exponential distribution , 1977 .

[52]  Julien Jacques,et al.  A generative model for rank data based on insertion sort algorithm , 2013, Comput. Stat. Data Anal..

[53]  H. A. David,et al.  The method of paired comparisons , 1966 .

[54]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[55]  P. Diaconis Group representations in probability and statistics , 1988 .

[56]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .