Approaches for the Integrated Analysis of Structure, Function and Connectivity of the Human Brain

Understanding the organization of the human brain is the fundamental prerequisite for appreciating the neural dysfunctions underlying neurological or psychiatric disorders. One major challenge in this context is the presence of multiple organizational aspects, in particular the regional differentiation in structure and function on one hand and the integration by inter-regional connectivity on the other. We here review these fundamental distinctions and introduce current methods for mapping regional specialization. The main focus of this review is to provide an overview over the different concepts and methods for assessing connections and interactions in the brain, in particular anatomical, functional and effective connectivity. In this context, we focus less on technical details and more on the comparative description of strengths and weaknesses of different aspects of connectivity as well as different methods for examining a particular aspect. This overview closes by raising several open questions on the conceptual and empirical relationship between different approaches towards understanding brain structure, function and connectivity.

[1]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Jessica A. Turner,et al.  Neuroinformatics Original Research Article , 2022 .

[3]  C. Cavada,et al.  The Visual Parietal Areas in the Macaque Monkey: Current Structural Knowledge and Ignorance , 2001, NeuroImage.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  S Ferraina,et al.  Cortical Networks for Visual Reaching: Intrinsic Frontal Lobe Connectivity , 1996, The European journal of neuroscience.

[6]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[7]  Ulla Ruotsalainen,et al.  Neuroinformatics: the integration of shared databases and tools towards integrative neuroscience. , 2002, Journal of integrative neuroscience.

[8]  Nikos Logothetis,et al.  Can current fMRI techniques reveal the micro-architecture of cortex? , 2000, Nature Neuroscience.

[9]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[10]  P. Fox,et al.  Metaanalytic connectivity modeling: Delineating the functional connectivity of the human amygdala , 2009, Human brain mapping.

[11]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[12]  Anatomical and functional subdivisions of inferior area 6 in macaque monkey , 1996 .

[13]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[14]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[15]  Paul M. Matthews,et al.  Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease , 2010, NeuroImage.

[16]  E. Ludwig,et al.  Atlas cerebri humani , 1956 .

[17]  C. Segebarth,et al.  Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation , 2008, PLoS biology.

[18]  Abraham Z. Snyder,et al.  A default mode of brain function: A brief history of an evolving idea , 2007, NeuroImage.

[19]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[20]  Silke Dodel,et al.  Functional connectivity: studying nonlinear, delayed interactions between BOLD signals , 2003, NeuroImage.

[21]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[23]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[24]  Karl Zilles,et al.  Architecture, Connectivity, and Transmitter Receptors of Human Extrastriate Visual Cortex , 1997 .

[25]  Heidi Johansen-Berg,et al.  Using diffusion imaging to study human connectional anatomy. , 2009, Annual review of neuroscience.

[26]  Gereon R. Fink,et al.  Mechanisms of hemispheric specialization: Insights from analyses of connectivity , 2007, Neuropsychologia.

[27]  Karl J. Friston Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution , 2011, NeuroImage.

[28]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[29]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[30]  Archana Venkataraman,et al.  Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. , 2010, Journal of neurophysiology.

[31]  Simon B. Eickhoff,et al.  Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke , 2011, NeuroImage.

[32]  Timothy M. Ellmore,et al.  Probing brain connectivity by combined analysis of diffusion MRI tractography and electrocorticography , 2011, Comput. Biol. Medicine.

[33]  Randy L. Buckner,et al.  Unrest at rest: Default activity and spontaneous network correlations , 2007, NeuroImage.

[34]  Simon B. Eickhoff,et al.  Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM , 2008, NeuroImage.

[35]  Timothy E. J. Behrens,et al.  Just pretty pictures? What diffusion tractography can add in clinical neuroscience , 2006, Current opinion in neurology.

[36]  Baxter P. Rogers,et al.  Original contributions Assessing functional connectivity in the human brain by fMRI B , 2007 .

[37]  K. Zilles,et al.  Somatosensory areas engaged during discrimination of steady pressure, spring strength, and kinesthesia , 2003, Human brain mapping.

[38]  Stephen M. Smith,et al.  DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease , 2011, NeuroImage.

[39]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[40]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[41]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[42]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[43]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[44]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[45]  D. V. Essen,et al.  Cognitive neuroscience 2.0: building a cumulative science of human brain function , 2010, Trends in Cognitive Sciences.

[46]  Klaas Enno Stephan,et al.  On the role of general system theory for functional neuroimaging , 2004, Journal of anatomy.

[47]  P. Broca,et al.  Localisation des fonctions cérébrales: Siège de langage articulé , 1863 .

[48]  J. Lanciego,et al.  Current concepts in neuroanatomical tracing , 2000, Progress in Neurobiology.

[49]  K. Zilles,et al.  Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex , 2001, NeuroImage.

[50]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[51]  Y. Grodzinsky,et al.  The battle for Broca’s region , 2008, Trends in Cognitive Sciences.

[52]  Simon B Eickhoff,et al.  Investigating the Functional Heterogeneity of the Default Mode Network Using Coordinate-Based Meta-Analytic Modeling , 2009, The Journal of Neuroscience.

[53]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[54]  G. Fink,et al.  Noradrenergic modulation of cortical networks engaged in visuomotor processing. , 2010, Cerebral cortex.

[55]  T. Paus,et al.  Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis , 2000, Experimental Brain Research.

[56]  Katrin Amunts,et al.  Observer‐independent analysis of high‐resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas , 2007, Human brain mapping.

[57]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[58]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[59]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[60]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[61]  P. Morosan,et al.  Quantitative Architectural Analysis: A New Approach to Cortical Mapping , 2009, Journal of autism and developmental disorders.

[62]  Karl J. Friston,et al.  PHRENOLOGY : What Can Neuroimaging Tell Us About Distributed Circuitry ? , 2005 .

[63]  Gereon R Fink,et al.  Noradrenergic enhancement improves motor network connectivity in stroke patients , 2011, Annals of neurology.

[64]  K Zilles,et al.  Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. , 2008, Cerebral cortex.

[65]  K. Zilles,et al.  Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty , 2009, Human brain mapping.

[66]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[67]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[68]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[69]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[70]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[71]  P. Roland,et al.  Mapping of human cerebral functions: a study of the regional cerebral blood flow pattern during rest, its reproducibility and the activations seen during basic sensory and motor functions. , 1977, Acta neurologica Scandinavica. Supplementum.

[72]  Karl J. Friston,et al.  Modelling functional integration: a comparison of structural equation and dynamic causal models , 2004, NeuroImage.

[73]  Randy L Buckner,et al.  Human functional connectivity: New tools, unresolved questions , 2010, Proceedings of the National Academy of Sciences.

[74]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[75]  K Friston,et al.  Stochastic Dynamic Causal Modelling , 2009, NeuroImage.

[76]  Simon B. Eickhoff,et al.  Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) , 2010, NeuroImage.

[77]  Martin A. Lindquist,et al.  Evaluating the consistency and specificity of neuroimaging data using meta-analysis , 2009, NeuroImage.

[78]  F. Sommer,et al.  Global Relationship between Anatomical Connectivity and Activity Propagation in the Cerebral Cortex , 2022 .

[79]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  Timothy Edward John Behrens,et al.  High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession , 2009, NeuroImage.

[81]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[82]  F. Lazeyras,et al.  Magnetic Resonance Imaging Techniques in White Matter Disease: Potentials and Limitations , 2009, Topics in magnetic resonance imaging : TMRI.

[83]  D. Boussaoud,et al.  Callosal connections of dorsal versus ventral premotor areas in the macaque monkey: a multiple retrograde tracing study , 2005, BMC Neuroscience.

[84]  M P Young,et al.  Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[86]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[87]  Deborah A. Hall,et al.  Connectivity analysis with structural equation modelling: an example of the effects of voxel selection , 2003, NeuroImage.

[88]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[89]  Timothy Edward John Behrens,et al.  Anatomical and Functional Connectivity of Cytoarchitectonic Areas within the Human Parietal Operculum , 2010, The Journal of Neuroscience.

[90]  G. Fink,et al.  Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches , 2011, Brain : a journal of neurology.

[91]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[92]  Markus Butz,et al.  Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease , 2011, NeuroImage.

[93]  Karl J. Friston,et al.  Functional neuroanatomy of the human brain: positron emission tomography--a new neuroanatomical technique. , 1994, Journal of anatomy.

[94]  Yoshio Sakurai,et al.  Dynamic Synchrony of Local Cell Assembly , 2008, Reviews in the neurosciences.

[95]  K. Amunts,et al.  The Anatomical Segregation of the Frontal Cortex: What Does it Mean for Function? , 2006, Cortex.

[96]  Rainer Goebel,et al.  The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution , 2011, NeuroImage.

[97]  J. Bolton,et al.  Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Gründlage , 1921 .