Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope
暂无分享,去创建一个
R. Bocka | A. Chilingarianb | M. Gaugc | F. Hakld | T. Hengstebecke | M. Ji | J. Klaschkad | E. Kotr | P. Savick | S. Towersf | A. Vaiciulisg | W. Witteka
[1] Aiko M. Hormann,et al. Programs for Machine Learning. Part I , 1962, Inf. Control..
[2] James P. Egan,et al. Signal detection theory and ROC analysis , 1975 .
[3] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[4] A. G. Ivakhnenko,et al. Self-Organizing Methods in Modelling and Clustering: GMDH Type Algorithms , 1988, Systems Analysis and Simulation 1988, I: Theory and Foundations. Proceedings of the International Symposium held in Berlin (GDR), September 12–16, 1988.
[5] M. Jirina,et al. The Modified GMDH: Sigmoidal and Polynomial Neural Net , 1994 .
[6] Garrido,et al. Discriminating signal from background using neural networks: Application to top-quark search at the Fermilab Tevatron. , 1996, Physical review. D, Particles and fields.
[7] D. Fegan. hadron separation at TeV energies , 1997 .
[8] J. Knapp,et al. CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .
[9] F. Samuelson,et al. Kernel analysis in TeV gamma-ray selection , 2001 .
[10] E. Lorenz,et al. A method to correct HILLAS parameters of imaging Cherenkov telescope data taken at different background light levels , 2001 .
[11] A. Vaiciulis,et al. Support vector machines in analysis of top quark production , 2002 .
[12] A. Vardanyan,et al. Multivariate approach for selecting sets of differentially expressed genes. , 2002, Mathematical biosciences.
[13] M. Gaug. AMANDA event reconstruction and cut evaluation methods , 2002 .
[14] Dustin Boswell,et al. Introduction to Support Vector Machines , 2002 .
[15] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[16] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[17] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.