Erratum to: Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  Christophe Croux,et al.  Sparse least trimmed squares regression for analyzing high-dimensional large data sets , 2013, 1304.4773.

[3]  Peter Filzmoser,et al.  The least trimmed quantile regression , 2012, Comput. Stat. Data Anal..

[4]  Peter Filzmoser,et al.  Robust joint modeling of mean and dispersion through trimming , 2012, Comput. Stat. Data Anal..

[5]  Christophe Croux,et al.  Sparse Least Trimmed Squares Regression , 2011 .

[6]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[7]  Jian Huang,et al.  COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. , 2011, The annals of applied statistics.

[8]  Sara van de Geer,et al.  Statistics for High-Dimensional Data , 2011 .

[9]  I. Gijbels,et al.  Penalized likelihood regression for generalized linear models with non-quadratic penalties , 2011 .

[10]  Pavel Čížek,et al.  Reweighted least trimmed squares: an alternative to one-step estimators , 2010, TEST.

[11]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[12]  Jianqing Fan,et al.  A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.

[13]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[14]  Babak Shahbaba,et al.  Nonlinear Models Using Dirichlet Process Mixtures , 2007, J. Mach. Learn. Res..

[15]  Jianqing Fan,et al.  Ultrahigh Dimensional Variable Selection: beyond the linear model , 2008, 0812.3201.

[16]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[17]  Cun-Hui Zhang Discussion: One-step sparse estimates in nonconcave penalized likelihood models , 2008, 0808.1025.

[18]  P. Čížek GENERAL TRIMMED ESTIMATION: ROBUST APPROACH TO NONLINEAR AND LIMITED DEPENDENT VARIABLE MODELS , 2007, Econometric Theory.

[19]  C. Robert Discussion of "Sure independence screening for ultra-high dimensional feature space" by Fan and Lv. , 2008 .

[20]  Jafar A. Khan,et al.  Robust Linear Model Selection Based on Least Angle Regression , 2007 .

[21]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[22]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[23]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[24]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[25]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[26]  P. J. Huber Robust Statistics: Huber/Robust Statistics , 2005 .

[27]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[28]  Stefan Van Aelst,et al.  Theory and applications of recent robust methods , 2004 .

[29]  C. Müller,et al.  Breakdown points of trimmed likelihood estimators and related estimators in generalized linear models , 2003 .

[30]  N. M. Neykov,et al.  Generalized d-fullness Technique for Breakdown Point Study of the Trimmed Likelihood Estimator with Application , 2003 .

[31]  P. Rousseeuw,et al.  Developments in Robust Statistics , 2003 .

[32]  Christine H. Müller,et al.  Breakdown Point and Computation of Trimmed Likelihood Estimators in Generalized Linear Models , 2003 .

[33]  V. Yohai,et al.  A class of robust and fully efficient regression estimators , 2002 .

[34]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[35]  C. Müller,et al.  Breakdown points and variation exponents of robust $M$-estimators in linear models , 1999 .

[36]  N. M. Neykov,et al.  About Regression Estimators with High Breakdown Point , 1998 .

[37]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[38]  B. Lindsay,et al.  Weighted likelihood estimating equations: The discrete case with applications to logistic regression , 1997 .

[39]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[40]  Christine H. Müller,et al.  Breakdown points for designed experiments , 1995 .

[41]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[42]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[43]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[44]  P. Green Iteratively reweighted least squares for maximum likelihood estimation , 1984 .

[45]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[46]  H. Akaike A new look at the statistical model identification , 1974 .