DNA Origami: Folded DNA‐Nanodevices That Can Direct and Interpret Cell Behavior

DNA origami is a DNA‐based nanotechnology that utilizes programmed combinations of short complementary oligonucleotides to fold a large single strand of DNA into precise 2D and 3D shapes. The exquisite nanoscale shape control of this inherently biocompatible material is combined with the potential to spatially address the origami structures with diverse cargoes including drugs, antibodies, nucleic acid sequences, small molecules, and inorganic particles. This programmable flexibility enables the fabrication of precise nanoscale devices that have already shown great potential for biomedical applications such as: drug delivery, biosensing, and synthetic nanopore formation. Here, the advances in the DNA‐origami field since its inception several years ago are reviewed with a focus on how these DNA‐nanodevices can be designed to interact with cells to direct or probe their behavior.

[1]  Patrick D. Halley,et al.  Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model. , 2016, Small.

[2]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[3]  Björn Högberg,et al.  Purification of functionalized DNA origami nanostructures. , 2015, ACS nano.

[4]  Tim Liedl,et al.  DNA-Tile Structures Induce Ionic Currents through Lipid Membranes. , 2015, Nano letters.

[5]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[6]  Silvia Hernández-Ainsa,et al.  DNA origami nanopores: developments, challenges and perspectives. , 2014, Nanoscale.

[7]  Jie Chao,et al.  Structural DNA nanotechnology for intelligent drug delivery. , 2014, Small.

[8]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[9]  S. Howorka,et al.  Membrane-Spanning DNA Nanopores with Cytotoxic Effect , 2014, Angewandte Chemie.

[10]  Alex B. Miller,et al.  Refilling drug delivery depots through the blood , 2014, Proceedings of the National Academy of Sciences.

[11]  Björn Högberg,et al.  Spatial control of membrane receptor function using ligand nanocalipers , 2014, Nature Methods.

[12]  H. W. Lam,et al.  Catalytic 1,4-Rhodium(III) Migration Enables 1,3-Enynes to Function as One-Carbon Oxidative Annulation Partners in C–H Functionalizations , 2014, Angewandte Chemie.

[13]  Yuki Takahashi,et al.  DNA nanotechnology-based development of delivery systems for bioactive compounds. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[15]  J. Cortes,et al.  Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. , 2014, Blood.

[16]  J. Kjems,et al.  Quantification of cellular uptake of DNA nanostructures by qPCR. , 2014, Methods.

[17]  Johannes B. Woehrstein,et al.  Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT , 2014, Science.

[18]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[19]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[20]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[21]  Jie Chao,et al.  Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. , 2014, Analytical chemistry.

[22]  T. LaBean,et al.  Sensitization of transforming growth factor-β signaling by multiple peptides patterned on DNA nanostructures. , 2013, Biomacromolecules.

[23]  Patrick Couvreur,et al.  Stimuli-responsive nanocarriers for drug delivery. , 2013, Nature materials.

[24]  David J Mooney,et al.  Macroscale delivery systems for molecular and cellular payloads. , 2013, Nature materials.

[25]  A method to study in vivo stability of DNA nanostructures☆ , 2013, Methods.

[26]  J. Chao,et al.  Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. , 2013, Small.

[27]  Jiye Shi,et al.  Smart Drug Delivery Nanocarriers with Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[28]  Silvia Hernández-Ainsa,et al.  DNA origami nanopores for controlling DNA translocation. , 2013, ACS nano.

[29]  Yamuna Krishnan,et al.  Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. , 2013, Nature nanotechnology.

[30]  M. Bathe,et al.  Designer nucleic acids to probe and program the cell. , 2012, Trends in cell biology.

[31]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[32]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[33]  Qiao Jiang,et al.  Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe. , 2012, Chemical communications.

[34]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[35]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[36]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[37]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[38]  Y. Barenholz Doxil®--the first FDA-approved nano-drug: lessons learned. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[39]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[40]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[41]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[42]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[43]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[44]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[45]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[46]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[47]  Tim Liedl,et al.  Cellular immunostimulation by CpG-sequence-coated DNA origami structures. , 2011, ACS nano.

[48]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[49]  Hao Yan,et al.  Organizing DNA origami tiles into larger structures using preformed scaffold frames. , 2011, Nano letters.

[50]  Matthew J. A. Wood,et al.  DNA cage delivery to mammalian cells. , 2011, ACS nano.

[51]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[52]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[53]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[54]  H. Sugiyama,et al.  Two-dimensional DNA origami assemblies using a four-way connector. , 2011, Chemical communications.

[55]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[56]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[57]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[58]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[59]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[60]  H. Sugiyama,et al.  Programmed-assembly system using DNA jigsaw pieces. , 2010, Chemistry.

[61]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[62]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[63]  Jung-Won Keum,et al.  Enhanced resistance of DNA nanostructures to enzymatic digestion. , 2009, Chemical communications.

[64]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[65]  D. Luo,et al.  The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. , 2009, Biomaterials.

[66]  H. Döhner,et al.  High-dose daunorubicin in older patients with acute myeloid leukemia. , 2009, The New England journal of medicine.

[67]  Adam T Woolley,et al.  Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. , 2009, Nano letters.

[68]  Hao Yan,et al.  Controlled delivery of DNA origami on patterned surfaces. , 2009, Small.

[69]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[70]  Rajesh Singh,et al.  Nanoparticle-based targeted drug delivery. , 2009, Experimental and molecular pathology.

[71]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[72]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[73]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[74]  David Neff,et al.  NTA directed protein nanopatterning on DNA Origami nanoconstructs. , 2009, Journal of the American Chemical Society.

[75]  Robert Langer,et al.  Impact of nanotechnology on drug delivery. , 2009, ACS nano.

[76]  B. Armitage,et al.  Fluorescent DNA nanotags based on a self-assembled DNA tetrahedron. , 2009, ACS nano.

[77]  Chengde Mao,et al.  DNA nanotubes as combinatorial vehicles for cellular delivery. , 2008, Biomacromolecules.

[78]  Y. Takakura,et al.  Enhanced immunostimulatory activity of oligodeoxynucleotides by Y‐shape formation , 2008, Immunology.

[79]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[80]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[81]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[82]  N. Seeman,et al.  Six-helix bundles designed from DNA. , 2005, Nano letters.

[83]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[84]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[85]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[86]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[87]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[88]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[89]  A. Bangham,et al.  Diffusion of univalent ions across the lamellae of swollen phospholipids. , 1965, Journal of molecular biology.

[90]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.