Chow Parameters in Threshold Logic

This paper is a broad treatment of Chow parameters-a set of n+l integers which can be abstracted from any given n-argument switching function. Basic properties and alternative definitions of these numbers are established and correlated with several earlier works in the subject. The main results are as follows: The class of "unique" functions-those with unique Chow parameter N-tuples-lies properly between the classes of threshold functions and the class of completely monotonic functions. The class of "extremal" functions-with locally minimal or maximal single parameters-lies properly between the class of unique functions and the class of unate functions (and these inclusions cannot be tightened in terms of other k-monotonicities). A closely related question recently raised is settled. Quadratic bounds and an infinite family of linear bounds, all tight, are obtained. A smooth well-behaved surface exists which encloses only the Chow parameters of nonthreshold functions and whose tangent hyperplanes define realizations of the function whose parameters lie outside the point of tangency.

[1]  Philip Kaszerman,et al.  ON THE SYNTHESIS OF THRESHOLD DEVICES , 1963 .

[2]  Robert O. Winder,et al.  Threshold Logic Asymptotes , 1970, IEEE Transactions on Computers.

[3]  Journal of the Association for Computing Machinery , 1961, Nature.

[4]  Robert O. Winder,et al.  Enumeration of Seven-Argument Threshold Functions , 1965, IEEE Trans. Electron. Comput..

[5]  Solomon W. Golomb,et al.  On the classification of Boolean functions , 1959, IRE Trans. Inf. Theory.

[6]  Robert O. Winder,et al.  Properties of Threshold Functions , 1965, IEEE Trans. Electron. Comput..

[7]  E. Levine On the Characterizing Parameters of a Threshold Function , 1968, IEEE Transactions on Computers.

[8]  Robert O. Winder,et al.  Symmetry Types in Threshold Logic , 1968, IEEE Transactions on Computers.

[9]  C. K. Chow,et al.  On the characterization of threshold functions , 1961, SWCT.

[10]  R. O. Winder,et al.  Chebyshev Approximation and Threshold Functions , 1965, IEEE Trans. Electron. Comput..

[11]  Michael L. Dertouzos,et al.  Threshold Logic: A Synthesis Approach , 1965 .

[12]  Eiichi Goto,et al.  Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions , 1962, IFIP Congress.

[13]  I. Ninomiya A study of the structures of Boolean functions and its application to the synthesis of switching circutis. , 1962 .

[14]  Robert O. Winder Threshold Gate Approximations Based on Chow Parameters , 1969, IEEE Transactions on Computers.

[15]  J. K. Hawkins Self-Organizing Systems-A Review and Commentary , 1961, Proceedings of the IRE.

[16]  Robert O. Winder,et al.  Threshold logic , 1971, IEEE Spectrum.

[17]  Michael L. Dertouzos,et al.  An Approach to Single-Threshold-Element Synthesis , 1964, IEEE Trans. Electron. Comput..

[18]  Philip Kaszerman,et al.  A Geometric Test-Synthesis Procedure for a Threshold Device , 1963, Inf. Control..

[19]  S. Muroga,et al.  Theory of majority decision elements , 1961 .

[20]  R. Winder THRESHOLD FUNCTIONS THROUGH N=7 , 1964 .

[21]  Robert P. Coleman Orthogonal Functions for the Logical Design of Switching Circuits , 1961, IRE Trans. Electron. Comput..

[22]  R. O. Winder,et al.  THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE , 1962 .